K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{\left(3x+1\right).\left(3x+4\right)}\)=\(\dfrac{1344}{2017}\)

\(A=\dfrac{2}{3}(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}\))=\(\dfrac{1344}{2017}\)

\(A=\dfrac{2}{3}(1-\dfrac{1}{3x+4})\)=\(\dfrac{1344}{2017}\)

\(A=1-\dfrac{1}{3x+4}=\dfrac{1344}{2017}:\dfrac{2}{3}\)

\(A=1-\dfrac{1}{3x+4}=\dfrac{2016}{2017}\)

\(A=\dfrac{1}{3x+4}=1-\dfrac{2016}{2017}\)

\(A=\dfrac{1}{3x+4}=\dfrac{1}{2017}\)

\(\Rightarrow\)\(3x+4=2017\)

\(3x=2017-4\)

\(3x=2013\)

\(x=671\)

\(\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)

\(\rightarrowđpcm\)

6 tháng 4 2017

Mik cần từ lâu òi , pn trả lời muộn quá !! Nhưng cảm ơn pn na !!!vui

24 tháng 4 2017

Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)

\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)

Nhận xét:

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)

\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)

Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)

4 tháng 5 2018

Ta có:

7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 => (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 và 1/61> 1/62> ... >1/79> 1/80 => (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 => 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 => ĐPCM

19 tháng 8 2018

Ta có : 1/41 + 1/42 + ... + 1/60 > 1/60 * 20 = 1/3 .

1/61 + 1/62 + ... + 1/80 > 1/80 * 20 = 1/4 .

1/41 + 1/42 + ... + 1/80 > 1/3 + 1/4 = 4/12 + 3/12 .

= 7/12 .

Do đó : A > 7/12 .

Vậy bài toán được chứng minh .

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

19 tháng 7 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)

\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Leftrightarrow D< 1-\dfrac{1}{10}\)

\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)

\(\Leftrightarrow D< 1\left(đpcm\right)\)

19 tháng 7 2017

Các phần còn lại tương tự như a).

31 tháng 3 2017

A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\)

5A=\(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+...+\dfrac{5}{5^{2014}}\)

5A=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\)

5A-A=\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\right)\)4A=\(1-\dfrac{1}{5^{2014}}\)

4A=\(\dfrac{5^{2014}-1}{5^{2014}}\)

A=\(\dfrac{5^{2014}-1}{5^{2014}}:4\)

A=\(\dfrac{5^{2014}-1}{5^{2014}}.\dfrac{1}{4}\)

\(\Rightarrow\)A<\(\dfrac{1}{4}\)

31 tháng 3 2017

Ta có:

A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\)

\(\Rightarrow\) 5A = 5\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\)

\(\Rightarrow\) 5A = \(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+....+\dfrac{5}{5^{2014}}\)

\(\Rightarrow\) 5A = \(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\)

\(\Rightarrow\)\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\right)\)-\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\) = 5A - A

\(\Rightarrow\)4A= 1 - \(\dfrac{1}{5^{2014}}\)

\(\Rightarrow\) A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4

Vậy A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4