Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
Xét hiệu:
7(4a + 5b) - 4(7a + 3b)
= 28a + 35b - 28a - 12b.
= (28a - 28a) + (35b - 12b)
= 23b
Vì 23 chia hết cho 23 => 23b chia hết cho 23 => 7(4a + 5b) - 4(7a + 3b) chia hết cho 23 (1)
Mà 7a + 3b chia hết cho 23 => 4(7a + 3b) chia hết cho 3 (2)
Từ (1) và (2) => 7(4a + 5b) chia hết cho 23.
=> 4a + 5b chia hết cho 23 (ƯCLN(7; 23) = 1) (ĐPCM)
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)
+ a - b chia hết cho 5
Mà 5b chia hết cho 5
=> a - b - 5b chia hết cho 5
=> a - 6b chia hết cho 5
+) a - b chia hết cho 5 => 2a - 2b chia hết cho 5
Mà 5b chia hết cho 5
=> 2a - 2b - 5b chia hết cho 5
=> 2a - 7b chia hết cho 5
Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23
Theo đề bài: 7a + 3b chia hết cho 23
=> 4(4a + 5b) chia hết cho 23
Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)