\(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a+2b\right)+\left(2b-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)

2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)

\(=25\left(a-b\right)^2=25\cdot100=2500\)

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(2b+3c+2c+3a+2a+3b\right)^2}{a+b+c}\)

\(=\frac{\left(5a+5b+5c\right)^2}{a+b+c}=\frac{\left[5\left(a+b+c\right)\right]^2}{a+b+c}\)

\(=\frac{25\left(a+b+c\right)^2}{a+b+c}=25\left(a+b+c\right)=VP\)

=> đpcm

Đẳng thức xảy ra <=> a = b = c

AH
Akai Haruma
Giáo viên
4 tháng 8 2017

Lời giải:

Đặt \(\left\{\begin{matrix} 3a+b-c=x\\ 3b+c-a=y\\ 3c+a-b=z\end{matrix}\right.\)

Khi đó, điều kiện đb tương đương với:

\((x+y+z)^3=24+x^3+y^3+z^3\Leftrightarrow 3(x+y)(y+z)(x+z)=24\)

\(\Leftrightarrow 3(2a+4b)(2b+4c)(2c+4a)=24\)

\(\Leftrightarrow (a+2b)(b+2c)(c+2a)=1\)

Do đó ta có đpcm.

11 tháng 8 2018

Câu a : \(\left(2a-3b\right)^2-\left(2a+3b\right)^2\)

\(=\left(2a-3b+2a+3b\right)\left(2a-3b-2a-3b\right)\)

\(=4a.-6b=-24ab\)

Câu b : \(\left(a-2b-3c\right)^2-\left(a-2b+3c\right)^2\)

\(=\left(a-2b-3c+a-2b+3c\right)\left(a-2b-3c-a+2b-3c\right)\)

\(=\left(2a-4b\right).\left(-6c\right)\)

\(=2\left(a-2b-3c\right)\)

12 tháng 8 2018

DƯƠNG PHAN KHÁNH DƯƠNG cậu ơi cậu giải thích cho mình cách phân tích của câu a với câu b đc k ạ ?

31 tháng 7 2017

Áp dụng BĐT AM - GM, ta có:

\(2\ge a^2+b^2\ge2ab\)

\(\Leftrightarrow ab\le1\)

\(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)

\(\le\dfrac{a\left(3b+a+2b\right)}{2}+\dfrac{b\left(3a+b+2a\right)}{2}\)

\(=\dfrac{a\left(5b+a\right)+b\left(5a+b\right)}{2}\)

\(=\dfrac{a^2+10ab+b^2}{2}\)

\(\le\dfrac{2+10}{2}=6\)

Dấu "=" xảy ra khi a = b = 1

9 tháng 6 2017

Áp dụng bất đẳng thức bunhiacopxki cho 2 bộ số (a;b) và \(\left(\sqrt{3b\left(a+2b\right)};b\sqrt{3a\left(b+2a\right)}\right)\) ta được:

\(P^2\le\left(a^2+b^2\right)\left(6a^2+6ab+6b^2\right)=12\left(a^2+ab+b^2\right)=12\left(2+ab\right)\le12\left(2+1\right)=36\)(vì \(a^2+b^2\ge2ab\Leftrightarrow ab\le\dfrac{a^2+b^2}{2}=\dfrac{2}{2}=1\))

Do đó \(P^2\le36\Leftrightarrow P\le6\) (không có giá trị nhỏ nhất vì P luôn lớn hoặc =0 nên không thể lớn hơn hoặc = -6)

Vậy Max P= 6 khi a=b=1