K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

a.b.c=1 mà a,b,c >0 suy ra a=b=c=1

vậy GTLN của a+b+c=1+1+1=3

NV
31 tháng 12 2021

\(P=bc.1.\sqrt{a-1}+\dfrac{ca}{3}.3.\sqrt{b-9}+\dfrac{ab}{4}.4.\sqrt{c-16}\)

\(P\le\dfrac{bc}{2}\left(1+a-1\right)+\dfrac{ca}{6}\left(9+b-9\right)+\dfrac{ab}{8}\left(16+c-16\right)\)

\(\Rightarrow P\le\dfrac{abc}{2}+\dfrac{abc}{6}+\dfrac{abc}{8}=912\)

\(P_{max}=912\)  khi \(\left(a;b;c\right)=\left(2;18;32\right)\)

24 tháng 2 2016

Chi biet phan 5 thoi @

      Vi 3a=5b=12suy ra a=4 ;b=2,4  ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6

25 tháng 2 2016

nguyen xuan duong sr minh viet nham dau bai 3a-5b=12

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$P^2=(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2\leq (a+b+b+c+c+a)(1+1+1)=6(a+b+c)=6$

$\Rightarrow P\leq \sqrt{6}$

Vậy gtln của $P$ là $\sqrt{6}$. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

6 tháng 3 2016

B=3 nhé bạn

NV
26 tháng 1 2022

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)

3 tháng 1 2021

Áp dụng BĐT cosi, ta có

\(\sqrt{3a+1}=\dfrac{1}{2}\sqrt{4\left(3a+1\right)}\le\dfrac{1}{2}.\dfrac{4+3a+1}{2}=\dfrac{3a+5}{4}\)

CMTT, ta có \(\sqrt{3b+1}\le\dfrac{3b+5}{4};\sqrt{3c+1}\le\dfrac{3c+5}{4}\)

Từ đó suy ra \(K\le\dfrac{3\left(a+b+c\right)+15}{4}=6\)

Dấu "=" xảy ra khi a=b=c=1

Vậy...

3 tháng 1 2021

ta có BĐT \(\sqrt{3a+1}\ge\dfrac{a\left(\sqrt{10}-1\right)}{3}+1\)

\(\Leftrightarrow a\left(3-a\right)\ge0đúng\forall a\)

CMRTT, ta có

\(\sqrt{3b+1}\ge\dfrac{b\left(\sqrt{10}-1\right)}{3}+1\)

\(\sqrt{3c+1}\ge\dfrac{c\left(\sqrt{10}-1\right)}{3}+1\)

Do đó \(K\ge\dfrac{\left(a+b+c\right)\left(\sqrt{10}-1\right)}{3}+3=\sqrt{10}+2\)

Dấu "=" xảy ra khi a=3, b=c=0

Vậy...