K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

undefined

19 tháng 11 2017

BĐT phụ chưa chắc đã đúng vì a,b,c đâu biết âm hay dương đâu

nên bài này sai đề hoặc thím giải sai rồi

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

19 tháng 7 2016

Ta có:

\(a+b+c=4\)

\(\Rightarrow\)  \(a< 4\)

\(\Rightarrow\)  \(a^4< 4a^3\)  (do  \(a>0\)  nên  \(a^3>0\)  )

Do đó,  \(a^3>\frac{a^4}{4}\)  hay nói cách khác,  \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\)  \(\left(1\right)\)

Từ đó, ta cũng tương tự thiết lập được:   \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\)  \(\left(2\right)\)  và   \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\)  \(\left(3\right)\)

Cộng từng vế các bđt   \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  ta có:

\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

13 tháng 11 2018

\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)

4 tháng 6 2018

Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y;\sqrt[4]{c}=z\)

Cần chứng minh

\(\sqrt[4]{a}+\sqrt[4]{b}>\sqrt[4]{c}=\sqrt[4]{a+b}\)

\(\Rightarrow\left(x^3+y^3\right)^4>\left(x^4+y^4\right)^3\)

Rôi phân phối ra là thấy

4 tháng 6 2018

E ko hiểu

2 tháng 8 2017

c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)

Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)

\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)

Đế C' nguyên thì a + 1 là ước của 1

\(\Rightarrow a=0\)

\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)

\(\Rightarrow x=\frac{9}{4}\left(l\right)\)

Vậy không có x.

Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks

2 tháng 8 2017

a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)

\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)

\(=\frac{1}{3-2\sqrt{x}}\)

Câu b, c tự làm nhé