Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
\(a^3+\dfrac{1}{9}+\dfrac{1}{9}\ge3\sqrt[3]{\dfrac{a^3}{81}}=\dfrac{a}{\sqrt[3]{3}}\)
\(b^3+\dfrac{8}{9}+\dfrac{8}{9}\ge3\sqrt[3]{\dfrac{64b^3}{81}}=\dfrac{4b}{\sqrt[3]{3}}\)
Cộng vế:
\(\dfrac{1}{\sqrt[3]{3}}\left(a+4b\right)\le a^3+b^3+2\le3\)
\(\Rightarrow a+4b\le3\sqrt[3]{3}\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{\sqrt[3]{9}};\dfrac{2}{\sqrt[3]{9}}\right)\)
( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8
\(\Rightarrow\)a ( a + b + c ) + bc = 8
\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)
\(\Rightarrow abc\left(a+b+c\right)\le16\)
Vậy GTLN của A là 16
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24