Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Tuogw tựCâu hỏi của Nue nguyen - Toán lớp 10 | Học trực tuyến
1. Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)
=> \(a-2\sqrt{ab}+b\ge0\)
=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)
=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)
=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);
(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)
1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)
Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)
Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)
Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :
\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )
Áp dụng bất đẳng thức bunyakovsky: \(\left(b+c\right)^2\le2\left(b^2+c^2\right)\Leftrightarrow b+c\le\sqrt{2\left(b^2+c^2\right)}\)
tương tự với các cặp còn lại , ta thu được \(VT\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\frac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
Đặt \(\hept{\begin{cases}\sqrt{b^2+c^2}=x\\\sqrt{a^2+c^2}=y\\\sqrt{a^2+b^2}=z\end{cases}}\)(\(x,y,z\ge0\)và \(x+y+z=\sqrt{2011}\))\(\Leftrightarrow\hept{\begin{cases}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\end{cases}}\)
\(VT\ge\frac{y^2+z^2-x^2}{2\sqrt{2}x}+\frac{x^2+z^2-y^2}{2\sqrt{2}y}+\frac{x^2+y^2-z^2}{2\sqrt{2}z}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{y^2+z^2-x^2}{x}+\frac{z^2+x^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)=\frac{1}{2\sqrt{2}}\left(\frac{y^2}{x}+\frac{z^2}{x}+\frac{z^2}{y}+\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-x-y-z\right)\)
ÁP dụng bất đẳng thức cauchy-schwarz:
\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{y^2}{z}+\frac{x^2}{x}\ge\frac{\left(2x+2y+2z\right)^2}{2x+2y+2z}=2x+2y+2z\)
do đó \(VT\ge\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2}\sqrt{\frac{2011}{2}}\)( vì \(x+y+z=\sqrt{2011}\))
đẳng thức xảy ra khi \(x=y=z=\frac{\sqrt{2011}}{3}\)hay \(a=b=c=\frac{1}{3}\sqrt{\frac{2011}{2}}\)
\(VT=\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{1}{2}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{2}\left(a+b+c\right)\)
\(VT\ge\frac{1}{2}\left(\frac{a^2}{b}-a+b+b\right)+\frac{1}{2}\left(\frac{b^2}{c}-b+c+c\right)+\frac{1}{2}\left(\frac{c^2}{a}-c+a+a\right)\)
\(VT\ge\sqrt{\left(\frac{a^2}{b}-a+b\right).b}+\sqrt{\left(\frac{b^2}{c}-b+c\right).c}+\sqrt{\left(\frac{c^2}{a}-c+a\right).a}\)
\(VT\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2.\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)
Tương tự:\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)
Cộng theo vế BĐT ta được:\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
\(3a^2+8b^2+14ab\le3a^2+8b^2+12ab+a^2+b^2=\left(2a+3b\right)^2\)
\(\Rightarrow\sqrt{3a^2+8b^2+14ab}\le2a+3b\)
\(\Rightarrow P=\sum\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\sum\frac{a^2}{2a+3b}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
theo BĐT cô - si ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\left(a\ge0,b\ge0\right)\)
\(\Leftrightarrow\)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\)\(a+b+a+b\ge2\sqrt{ab}+a+b\)
\(\Leftrightarrow\)\(2a+2b\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(\frac{1}{4}\cdot2\cdot\left(a+b\right)\ge\frac{1}{4}\cdot\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}\)
\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) \(\left(đpcm\right)\)
Biến đổi tương đương đi