K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2015

Bài này không khó lắm  

~~~Đoàn Ngọc Minh Hiếu~~~

27 tháng 11 2016

Ta có :

(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)

(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)

\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)

<=> A chia hết cho 5 (2)

Mà (5;7)=1 (3)

Từ (1) ; (2) và 3

=> A chia hết cho 5.7 = 35

16 tháng 1 2016

Ta có :

A = 7 + 73 + 75 + 77 + ... + 71997 + 71999

   = (7 + 73) + (75 + 77) + ... + (71997 + 71999)

   = 7 (1 + 72) + 75 (1 + 72) + ... + 71997 (1 + 72)

   = 7 . 50 + 75 . 50 + ... + 71997 . 50

   = 350 + 74 . 350 + ... + 71996 . 350

   = 35 . 10 + 74 . 35 . 10 + ... + 71996 . 35 . 10

   = 35 (10 + 74 . 10 + ... + 71996 . 10) chia hết cho 35

Vậy A chia hết cho 35 (ĐPCM).

13 tháng 2 2020

Đáp án của tôi cũng giống như bạn Trần Hùng Minh vậy .

9 tháng 3 2017

A=7+7^3+7^5+..............+7^999

  =[7+7^3]+[7^5+7^7]+..............+[7^997+7^999] 

  =7[1+7^2]+7^5[1+7^2]+..............+7^997[1+7^2]

  =7[1+49]+7^5[1+49]+................7^997[1+49]

  =7*50+7^5*50+...................+7^997*50

  =350+7^4*7*50+.................+7^996*7*50

  =350+7^4*350+................+7^996*350

  =350[1+7^4+................+7^996]

vì 350 chia hết cho 35 nên A chia hết cho 35

29 tháng 9 2023

\(_{^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }\veebar\circledcircℕ^∗\Phi}\)

4 tháng 10 2016

Bài 1:

a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016

7A = 7 + 72 + 73 + 74 + ... + 72017

7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)

6A = 72017 - 1

\(A=\frac{7^{2017}-1}{6}\)

b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017

4B = 4 + 42 + 43 + 44 + ... + 42018

4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)

3B = 42018 - 1

\(B=\frac{4^{2018}-1}{3}\)

Bài 2:

a) Ta có: \(14\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)

\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)

b) Ta có: \(2015\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)

\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)

4 tháng 10 2016

Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha

 

26 tháng 8 2017

\(A=7+7^3+7^5+......+7^{1999}\)

\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)

\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)

\(A=350+7^4.350+.......+7^{1996}.350\)

\(A=350.\left(1+7^4+......+7^{1996}\right)\)

\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)

\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)