K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

a) để \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\ge-4\\m+3\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{-3}{2}\\m\le2\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}\le m\le2\)

b) để \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-4\\m+3\ge5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{-3}{2}\\m\ge2\end{matrix}\right.\Rightarrow m\in\varnothing\)

c) để \(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+3< 4\\5< 2m-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< 1\\m>3\end{matrix}\right.\)

\(\Rightarrow m\in\left(-\infty;1\right)\cup\left(3;+\infty\right)\)

19 tháng 9 2020

cho mình hỏi câu c.

tại sao m+3< 4 mà ko phải m+3<-4

5 tháng 9 2021

b)

=>\(\left\{{}\begin{matrix}m-1>2\\m+3\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>3\\m\le2\end{matrix}\right.\)(vô lý)

vậy ko tồn tại m

5 tháng 9 2021

a)\(\left\{{}\begin{matrix}2>m-1\\5< m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\Leftrightarrow2< m< 3\)

a: \(A\cap B=\left(-3;1\right)\)

\(A\cup B\)=[-5;4]

A\B=[1;4]

\(C_RA\)=R\A=(-∞;-3]\(\cap\)(4;+∞)

b: C={1;-1;5;-5}

\(B\cap C=\left\{-5;-1\right\}\)

Các tập con là ∅; {-5}; {-1}; {-5;-1}

18 tháng 12 2020

a, \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m+3\ge5\\2m-1< -4\end{matrix}\right.\Rightarrow m\in\left\{\varnothing\right\}\)

b, \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m+3\le5\\2m-1>-4\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m\le2\)

c, \(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}2m-1>5\\m+3\le-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>3\\m\le-7\end{matrix}\right.\)

d, \(A\cup B\) là một khoảng \(\Leftrightarrow\left\{{}\begin{matrix}m+3>5\\2m-1\le5\end{matrix}\right.\Leftrightarrow2< m\le3\)

12 tháng 10 2021

Bài 1:
Để A giao B bằng rỗng thì \(\left[{}\begin{matrix}m+3< -3\\2m-1>6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -6\\m>\dfrac{7}{2}\end{matrix}\right.\)

NV
5 tháng 10 2020

a/

\(\Leftrightarrow2m+3\ge m+1\Leftrightarrow m\ge-2\)

b/

Tổng 3 phần tử chẵn \(\Rightarrow\) có các trường hợp:

- Cả 3 phần tử đều chẵn: có đúng 1 tập \(\left\{2;4;6\right\}\)

- 2 phần tử lẻ và 1 phần tử chẵn: chọn 2 phần tử lẻ từ 3 phần tử lẻ có 3 cách, kết hợp với 1 trong 3 phần tử chẵn \(\Rightarrow3.3=9\) tập

Vậy có 10 tập thỏa mãn

Để A hợp B=A thì B là tập con của A

=>2m-5<23 và 23<=-m

=>2m<28 và -m>=23

=>m<=-23 và m<14

=>m<=-23

=>Chọn B

24 tháng 9 2023

Tham khảo:

 a) \(A \subset A \cup B\) vì

b) \(A \cap B \subset A\) vì

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

17 tháng 9 2023

\(A=\left(-3;-1\right)\cup\left(1;2\right)\)

\(B=\left(-1;+\infty\right)\)

\(C=\left(-\infty;2m\right)\)

\(A\cap B=\left(-3;-1\right)\)

Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)

\(\Leftrightarrow m\ge-\dfrac{1}{2}\)

Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài