K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Ta có : A = 2 + 22 + 23 + 24 + ... + 259 + 260

               = (2 + 22) + (23 + 24) + .... + (259 + 260)

               = (2 + 22) + 22.(2 + 22) + ... + 258.(2 + 22)

               = 6 + 22.6 + ... + 258 . 6

               = 6.(1 + 22 + .... + 258

                = 2.3.(1 + 22 + .... + 258\(⋮\)3

=> A \(⋮\)3 (đpcm)

Lại có : A = 2 + 22 + 23 + 24 + 25 + 26 + ... + 258 + 259 + 260

               =  (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260

               =  (2 + 22 + 23) + 23. (2 + 22 + 23) + .... + 257. (2 + 22 + 23)

               = 14 + 23.14 + .... + 257.14

               = 14.(1 + 23 + ... + 257)

                = 2.7.(1 + 23 + ... + 257\(⋮\)7

=> A \(⋮\)7 (đpcm)

13 tháng 7 2015

bai1 

(2+22)+(23+24)+...+(259+260)

=(2+22+23)+...+(258+259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=3.2+3.23+3.59chia hết cho 3 vì có số 3

=2.(1+2+22)+...+258.(1+2+23)

A=3.(2+23+25+...+259)=7.(2+24+27+...+255+258)chia hết cho 7 vì có số 7

14 tháng 7 2015

Ai đó giải hộ mình phần b bài 2 với!!!!! Còn mỗi phần đấy là mình ngồi cắn bút...

11 tháng 8 2018

\(A=2+2^2+2^3+...+2^{60}\)

    \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

     \(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

      \(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy....

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)

    \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)

     \(=30.\left(1+5^2+...+5^6\right)⋮30\)

11 tháng 8 2018

Bài 1 bạn kia giải rồi 

2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d

=> (6n+15)-(6n+14) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* nên d = 1

=> ƯCLN(2n+5;3n+7) = 1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

3. Nếu x+2y chia hết cho 5

=> 3.(x+2y) chia hết cho 5

=> 3x+6y chia hết cho 5

Mà 10y chia hết cho 5

=> (3x+6y)-10y chia hết cho 5

=> 3x - 4y chia hết cho 5

=> ĐPCM

11 tháng 10 2016

A=2+22+23+...+260

=(2+22)+(23+24)+...+(259+260)

=2.(1+2)+23.(1+2)+...259.(1+2)

=2.3+23.3+...+259.3

=3.(2+23+...+259) chia hết cho 3 (đpcm)

A=2+22+23+...+260

=(2+22+23)+...+(258+259+260)

=2.(1+2+22)+...+258.(1+2+22)

=2.7+...+258.7

=7.(2+...+258) chia hết cho 7 (đpcm)

A=2+22+23+...+260

=(2+22+23+24)+...+(257+258+259+260)

=2.(1+2+22+23)+...+257.(1+2+22+23)

=2.15+...+257.15

=15.(2+...+257) chia hết cho 15 (đpcm)

14 tháng 11 2018

\(A=2+2^2+2^3+.....+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+......+\left(2^{59}+2^{60}\right)\)

\(A=2.\left(1+2\right)+2^3.\left(1+3\right)+....+2^{59}.\left(1+2\right)\)

\(A=2.3+2^3.3+....+2^{59}.3\)

\(A=3.\left(2+2^3+...+2^{59}\right)⋮3\)

\(\Rightarrow A⋮3\)

14 tháng 11 2018

Ta có : \(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)

Từ 1 đến 60 có 60 số gồm 30 số chẵn 30 số lẻ

\(A=\left(2+2^3+...+2^{57}+2^{59}\right)+\left(2^2+2^4+...+2^{58}+2^{60}\right)\)

Ghép các cặp lại với nhau vừa đủ 15 cặp có số mũ lẻ và 15 cặp có số mũ chẵn

\(A=\left[\left(2+2^3\right)+...+\left(2^{57}+2^{59}\right)\right]+\left[\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\right]\)

\(A=\left[2\left(1+2^2\right)+...+2^{57}\left(1+2^2\right)\right]+\left[2^2\left(1+2^2\right)+...+2^{58}\left(1+2^2\right)\right]\)

\(A=\left[2.5+...+2^{57}.5\right]+\left[2^2.5+...+2^{58}.5\right]\)chia hết cho 5

Mà 3, 5, 7 nguên tố cùng nhau, A chia hết 3, 5, 7 và 3.5.7=105

=> A chia hết cho 105

27 tháng 11 2015

A=2+2^2+2^3+...+2^60

=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=2(1+2)+2^3(1+2)+...+2^59(1+2)

=3(2+2^3+...+2^59) chia hết cho 3

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=2(1+2+2^2)+...+2^58(1+2+2^2)

=7(2+...+2^58) chia hết cho 7

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=15(2+...+2^57) chia hết cho 15