K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Có A=2+22+23+24+...+2100

             = 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)

             =2.15+25.15+29.15+...+296.15

             =15(2+25+29+...+296)

=> A \(⋮\) 15 

b)

A=2+22+23+.....+2100

   =  (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)

   = 1.30 + 24.30 + ..... + 296.30

   = 30.(1+34+...+296)

=>A\(⋮\) 30 < = > A \(⋮\) 10

< = >A có tận cùng là 0 

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

9 tháng 2 2021

A=2+22+23+...+220A=2+22+23+...+220

2A=22+23+24+...+2212A=22+23+24+...+221

2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)

A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2

A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯

Vậy chữ số tận cùng cả A là 0

14 tháng 10 2023

a) Tổng A có số số hạng là:

`(101-1):1+1=101`(số hạng)

b) `A=2+2^3 +2^5 +...+2^101`

`2^2 A=2^3 +2^5 +2^7 +...+2^103`

`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`

`3A=2^103 -2`

`=>3A+2=2^103 -2+2=2^103`

c) `A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4 +...+2^100)⋮2`

`A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`

`A=2.21+...+2^97 .21`

`A=21(2+...+2^97)⋮21`

14 tháng 10 2023

loading...  loading...  

2 tháng 12 2017

a) Ta có: \(A=4+4^2+4^3+....+4^{24}\)

\(\Rightarrow A=\left(4+4^2+4^3\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)

\(\Rightarrow A=4.\left(1+4+4^2\right)+....+4^{22}.\left(1+4+4^2\right)\)

\(\Rightarrow A=21.\left(4+....+4^{22}\right)⋮21\)

Vậy \(A⋮21\)

b) Tự làm

23 tháng 10 2017

Chia hết cho 3

a) A = 2 + 22 + 23 +....... + 2100

A = ( 2+ 22) + (23 + 24) + ........ (299+2100)

A = 2(1+2) + 23(1+2) + ........+ 299(1+2)

A= 2. 3 + 23 . 3 + ........ + 299. 3

= 3 . ( 2 + 23 + .........+ 299)

Vì 3 chia hết cho 3 => 3. ( 2 + 23 + ........+299) chia hết cho 3 hay A chia hết cho 3

Chia hết cho 15 cũng tương tự như vậy nha bn!

Ghép 4 số rồi tính!

CHÚC BN HOK GIỎI!

23 tháng 10 2017

bạn làm giúp mình luôn chia hết cho 15 nha