Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(A=2A-A=1-\frac{1}{2^{10}}\Rightarrow A+\frac{1}{2^{10}}=1-\frac{1}{2^{10}}+\frac{1}{2^{10}}=1\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)
\(A+\frac{1}{2^{10}}=1\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot2}-\dfrac{1}{2\cdot2\cdot2}+\dfrac{1}{2\cdot2\cdot2}-\dfrac{1}{2\cdot2\cdot2\cdot2}+.....+\dfrac{1}{2^{10}}\)
\(A=1-\dfrac{1}{2^{10}}\)
\(A+\dfrac{1}{2^{10}}=1-\dfrac{1}{2^{10}}+\dfrac{1}{2^{10}}=1\left(dpcm\right)\)
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
ta có
\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};.......;\frac{1}{10^2}<\frac{1}{9.10}\)
=> \(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+......+\frac{1}{9}-\frac{1}{10}\)
\(A<1-\frac{1}{10}=\frac{9}{10}<1\)
vậy A< 1
A = \(\frac{1}{2}+\frac{1}{2^{^2}}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
2\(\times\)A=\(\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{10}}\)
2A - A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\) -\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
A= 1 - \(\frac{1}{2^{10}}\)
A= \(\frac{1023}{1024}\)
một số chỗ hơi tắt bạn thông cảm nha
a) \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)
\(A=\frac{777...}{1000...}\)
b) 1/2+1/3+1/4+…+1/63=1/2+(1/3+1/4)+(1/5+1/6+…+1/10)+(1/11+1/12+….+1/20)+(1/21+1/22+….1/63).
Ta thấy:
1/3+1/4>1/4+1/4=1/2
1/5+1/6+…+1/10>5/10=1/2
1/11+1/12+….+1/20>10/20=1/2
Thêm.cái 1/2 sắn có là đủ >2 rồi nhể
a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210
= (2 + 22) + (23 + 24) +.....+ (29 + 210)
= 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)
= 3.(2 + 23 +.... + 29) chia hết cho 3
=> S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)
b) 1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40 (đpcm)
A=(1/2-1).(1/3-1).(1/4-1)-(1/9-1).(1/10-1)
<=>A=(-1/2).(-2/3).(-3/4)-(-8/9).(-9/10)
<=>A=-6/24+72/90
<=>A=-1/4+4/5
<=>A=11/20>0
MÀ -1/9 < 0 suy ra: A>-1/9(đpcm)
mình sửa lại dòng thứ 4 nhé;
<=> A=-1/4-4/5
<=>A=-21/20
ta có: -1/9=-20/180
-21/20=-189/180
mà -189>-20 suy ra A>-1/9
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)
\(\Leftrightarrow A+\dfrac{1}{2^{10}}=1\left(đpcm\right)\)
1+1=3