K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Lớp 9 học hđt rồi bạn nhỉ \(VT=a-\sqrt{a}+1=a-\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=VP\)

26 tháng 5 2018

hđt là gì ạ

16 tháng 12 2017

bunhia cc

16 tháng 12 2017

ngu nói mẹ ra bài này làm đél bunhia được

8 tháng 6 2021

1)Để căn có nghĩa \(\Leftrightarrow\dfrac{-a}{3}\ge0\Leftrightarrow a\le0\)

Vậy...

2)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a^2+1}{1-3a}\ge0\\1-3a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1-3a>0\left(vìa^2+1>0\right)\\1-3a\ne0\end{matrix}\right.\)

\(\Leftrightarrow1-3a>0\Leftrightarrow3a< 1\Leftrightarrow a< \dfrac{1}{3}\)

Vậy...

3)Để căn có nghĩa 

\(\Leftrightarrow a^2-6a+10\ge0\Leftrightarrow\left(a^2-6a+9\right)+1\ge0\Leftrightarrow\left(a-3\right)^2+1\ge0\left(lđ;\forall a\right)\)

Vậy căn luôn có nghĩa với mọi a

4)Để căn có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a-1}{a+2}\ge0\\a+2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+2< 0\end{matrix}\right.\end{matrix}\right.\\a+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a\ge1\\a>-2\end{matrix}\right.\\\left\{{}\begin{matrix}a\le1\\a< -2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -2\end{matrix}\right.\)

Vậy...

12 tháng 6 2018

Áp dụng liên tiếp bđt Cauchy-Schwarz và AM-GM

\(\dfrac{x}{1+y^2}+\dfrac{y}{1+x^2}=\dfrac{x^2}{x+y^2x}+\dfrac{y^2}{y+x^2y}\)

\(\ge\dfrac{\left(x+y\right)^2}{x+y+y^2x+x^2y}=\dfrac{4}{x+y+xy\left(x+y\right)}\)

\(=\dfrac{4}{2+2xy}\ge\dfrac{4}{2+\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{4}=1\)

\("="\Leftrightarrow x=y=1\)

12 tháng 6 2018

==" Phúc oánh bây h đó chế

11 tháng 8 2023

Bạn xem kỹ lại đề có đúng không?

21 tháng 9 2018

Bài này đơn giản, bạn chịu khó suy nghĩ chút là ra thôi! :))

Hệ thức lượng trong tam giác vuông

a: ĐKXĐ: x>=0; x<>4; x<>9

b; \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

c: Để A là số nguyên thì \(\sqrt{x}-3+4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)

hay \(x\in\left\{16;25;1;49\right\}\)

16 tháng 8 2021

you hỏi gì mà ILOVEYOU vậy

6 tháng 1 2022

là love nha

5 tháng 2 2022

\(a.-3x^2+15x=0\)

\(\Leftrightarrow3x\left(-x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\-x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

\(b.2x^2-32=0\)

\(\Leftrightarrow2x^2=32\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow\left|x\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(c.2x^2-5x+1=0\)

\(a=2;b=-5;c=1\)

\(\Delta=\left(-5\right)^2-4.2.1=17>0\)

Do \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+\sqrt{17}}{4}\)

\(x_2=\dfrac{5-\sqrt{17}}{4}\)

\(a,-3x^2+15x=0\\ -3x\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\) 

\(b,\\ 2\left(x^2-16\right)=0\\ \Leftrightarrow x^2-16=0\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\) 

\(c,\\ \Delta=5^2-4.2=17\\ \Rightarrow x_1,x_2=\dfrac{\Delta\pm b}{2ac}\\ =\dfrac{5\pm\sqrt{17}}{4}\)

☘ TOÁN 9 ☘ Câu 1: Cho a,b,c là các số ko âm và a+b+c=1 CM: \(\sqrt{a+1}\) +\(\sqrt{b+1}\) +\(\sqrt{c+1}\) <3,5 Câu 2: Cho biểu thức: (x+\(\sqrt{x^2+2006}\))(y+\(\sqrt{y^2+2006}\))=2006. Tính: S= x+y Câu 3: Cho bt: P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\) với x>0; x\(\ne\)4 a) Rút gọn P b) Tìm x để P>3 Câu 4: Cho bt: A= \(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x+1}}\) a) Đặt điều kiện...
Đọc tiếp

TOÁN 9

Câu 1: Cho a,b,c là các số ko âm và a+b+c=1

CM: \(\sqrt{a+1}\) +\(\sqrt{b+1}\) +\(\sqrt{c+1}\) <3,5

Câu 2: Cho biểu thức: (x+\(\sqrt{x^2+2006}\))(y+\(\sqrt{y^2+2006}\))=2006. Tính: S= x+y

Câu 3: Cho bt: P= \(\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\) với x>0; x\(\ne\)4

a) Rút gọn P

b) Tìm x để P>3

Câu 4: Cho bt: A= \(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x+1}}\)

a) Đặt điều kiện để bt A có nghĩa

b) Rút gọn bt A

c) Với giá trị nào của thì A<1

Câu 5: Cho bt : M= \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

a) Tìm ĐKXĐ của M

b) Rút gọn bt

c) Tìm giá trị của a để M=-4

Câu 6: Rút gọn bt:

a) 4x+\(\sqrt{\left(x-12\right)^2}\) ( x\(\ge\)2 )

b) x+2y-\(\sqrt{\left(x^2-4xy+4y^2\right)}\) ( x\(\ge\)2y)

☛❤ giúp mk vs nha ❤✔☺☺

1
12 tháng 1 2018

câu 5

Hỏi đáp Toán

13 tháng 1 2018

thanks ☺☺