Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7};x+y+z=56\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.2=8\\y=4.5=20\\z=4.7=28\end{matrix}\right.\)
b) \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\left(1\right);2x-y=5,5\)
\(\left(1\right)\Rightarrow\dfrac{2x-y}{1,1.2-1,3}=\dfrac{5,5}{0,9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1,1.\dfrac{5,5}{0,9}=\dfrac{6,05}{0,9}\\y=1,3.\dfrac{5,5}{0,9}=\dfrac{7,15}{0,9}\\z=\dfrac{1,4}{1,1}.x=\dfrac{1,4}{1,1}.\dfrac{6,05}{0,9}=\dfrac{8,47}{0,99}\end{matrix}\right.\)
d) \(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5};xyz=-30\)
\(\dfrac{x}{2}=\dfrac{x}{3}=\dfrac{z}{5}=\dfrac{xyz}{2.3.5}=\dfrac{-30}{30}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=3.\left(-1\right)=-3\\z=5.\left(-1\right)=-5\end{matrix}\right.\)
1: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)
=>x=-48; y=-91
2: x/y=3/4
=>4x=3y
=>4x-3y=0
mà 2x+y=10
nên x=3 và y=4
3: =>7x-3y=0 và x-y=-24
=>x=18 và y=42
4: =>7x-5y=0 và x+y=24
=>x=10 và y=14
P/s: Vì lười nên chị viết tắt nha.
1) Áp dụng tính chất... ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3=-12\\y=-4.5=-20\end{cases}}\)
2) Có: \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất... ta có: \(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.11=33\end{cases}}\)
3) tương tự 2)
4), 8) và 9) tương tự 1)
5) Có: \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất... (Tương tự các phần trên).
6) và 7) tương tự 5)
10) 4x = 5y phải không ? Vậy vẫn tương tự 5)
a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)
b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)
a: ta có: \(\dfrac{2x-5}{7x-1}=\dfrac{4x+3}{14x-9}\)
\(\Leftrightarrow\left(2x-5\right)\left(14x-9\right)=\left(7x-1\right)\left(4x+3\right)\)
\(\Leftrightarrow28x^2-18x-70x+45=28x^2+21x-4x-3\)
=>-88x+45=17x-3
=>-105x=-48
hay x=16/35
b: Sửa đề: \(\dfrac{x}{4}=\dfrac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x-y}{4-9}=\dfrac{105}{-5}=-21\)
Do đó: x=-84; y=-189
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x-5y}{2\cdot3-5\cdot4}=\dfrac{56}{-14}=-4\)
Do đó:x=-12; y=-16
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x^2}{2}=\dfrac{y^2}{3}=\dfrac{x^2+y^2}{2+3}=\dfrac{125}{5}=25\)
Do đó: \(x^2=50;y^2=75\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{5\sqrt{2};-5\sqrt{2}\right\}\\y\in\left\{5\sqrt{3};-5\sqrt{3}\right\}\end{matrix}\right.\)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$
Đáp án B