Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co :
+ So chia 5 du 1 co dang 5k +1
+ So chia 5 du 2 co dang 5k+2
+ So chia 5 du 3 co dang 5k +3
+ So chia 5 du 4 co dang 5k+4
tong cac stn do la :
5k +1+ 5k+ 2 +5k+3 +5k+4
= 5k .4 + ( 1+2+3+4)
= 5k.4+10
Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5
10 chia het cho 5
\(\Rightarrow\)5k .4 +10 chia het cho 5
vay tong 4 stn do chia het cho 5 ( dpcm)
tick cho minh nha
neu 4 stn do chia 5 dc nhung so du khac nhau ma so nao chia cung deu du ta co :
+ so chia 5 du 1 co dang 5k+1
+ so chia 5 du 2 co dang 5k+2
+ so chia 5 du 3 co dang 5k +3
+ so chia 5 du 4 co dang 5k +4
tong 4 stn la:
5k+1 +5k+2+5k+3+5k+4
= 5k .4 + ( 1+2+3+4)
= 5k.4 +10
Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5
10 chia het cho 5
\(\Rightarrow\)5k.4+10chia het cho 5
vay : tong 4 stn do chia het cho 5 ( dpcm)
tick minh nha
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
a,
Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:
a + a + 1 + a + 2 = 3a + 3
Mà 3a \(⋮3;3⋮3\)
=> 3a + 3 \(⋮3\)
Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3
b,
Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư
a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2
Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2
c,
Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:
a[a + 1]
*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2
* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2
Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2
d,
Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:
a[a+1][a+2]
* cm a[a+1][a+2] chia hết cho 2
** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
Vậy a[a+1][a+2] chia hết cho 2
* cm a[a+1][a+2] chia hết cho 3
Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2
** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
Vậy a[a+1][a+2] chia hết cho 3
Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
e,
2 + 22 + 23 + 24 + ... + 260
= 2[1 + 2 + 22 + 23 + 24 + ... + 260] \(⋮2\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]
= 14 + 24.14 +... + 256.14
= 7 . 2[1 + 24 + ... + 256] \(⋮7\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 5.6 + 25.5.6 + ... + 255.5.6
= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 15.2 + 25.15.2 + ... + 255.15.2
= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)
Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15
g,
102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]
= 999.....9999 [2004 chữ số 9]
Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]
=> 102005 - 1 chia hết cho 9
Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]
=> 102005 - 1 chia hết cho 3
Vậy 102005 - 1 chia hết cho 3 và 9
h,
Ta có:
102005 + 2 = 102005 - 1 + 3
Mà 102005 - 1 chia hết cho 3 [chứng minh trên]
Lại có: 3 chia hết cho 3
=> 102005 + 2 chia hết cho 3
Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9
Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Chứng minh rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Đặt 3 số tự nhiên liên tiếp là: n, n+1, n+2
Giả sử n⋮ 3 thì thỏa mãn đề bài
Giả sử n chia 3 dư 1 thì n=3k+1 ⇒ n+2=3k+3⋮ 3 ⇒ thỏa mãn đề bài
Giả sử n chia 3 dư 2 thì n=3k+2 ⇒ n+1=3k+3⋮ 3 ⇒ thỏa mãn đề bài
Vậy trong 3 số tự nhiên liên tiếp thì luô có 1 số chi hết cho 3
ta có : tông 3 số tự nhiên liên tiếp là :
a+a+1+a+2= 3a+3
vì 3 chia hết cho (chc) 3 mà một số tự nhiên nhân với bất kì số nào cũng chia hết cho chính no
=> 3a chc 3
=> 3a+3 chc 3
Vậy 3 số tự nhiên liên tiếp luôn chc 3
Mình nghĩ đề bài của bạn bị sai. Lấy ví dụ trường hợp : 2 số có dạng 3k + 2 và 1 số có dạng 3k + 1
=> 2(3k + 2) + 3k + 1 = 9k + 5
=> ko chia hết cho 3
VD 11 + 14 + 100 = 125 ko chia hết cho 3
Nếu thấy mình đúng thì li-ke cho mình nhé