K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

\(\left(Ax+B\right)\left(Cx+D\right)=A.C.x^2+\left(B.C+A.D\right)x+AD=50x^2+25x-3\)

\(\hept{\begin{cases}A.C=50\\B.C+A.D=25\\A.D=-3\end{cases}}\)do D=-1 ta tính được\(\hept{\begin{cases}A=3\\B=\frac{42}{25}\\C=\frac{50}{3}\end{cases}}\)

\(\left(\frac{C}{A}-B\right)D^{2017}=-\frac{827}{225}\)

11 tháng 2 2017

kết quả là 1

Chắc chắn 100%

12 tháng 2 2017

Ta có :

\(\left(Ax+B\right)\left(Cx+d\right)=ACx^2+\left(BC+AD\right)x+BD\)

\(=50x^2+25x-3\)

Mà D=-1=>B=3 .

Ta có :AC và 3C-A=25=>C=10 và A=5 .

Thay vào \(\left(\frac{10}{5}-3\right)\left(-1\right)^{2017}=-1.-1=1\)

12 tháng 2 2017

P=1

11 tháng 2 2017

Làm theo cách phân tích con này không đơn giản

(violypic cần nhanh nữa)

Cách Phân phối:

\(\left(ax+b\right)\left(cx+d\right)=acx^2+\left(bc+ad\right)x+bd\)

d=-1=> b=3

ac=50 và 3c-a=25 => c=10 và a=5

Thay vào \(\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)

11 tháng 2 2017

1

8 tháng 2 2017

(Ax+B)(Cx+D)=\(ACx^2+\left(BC-A\right)x-B=50x^2+25x-3\)

Như vậy: \(\hept{\begin{cases}AC=50\\BC-A=25\\B=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}A=5\\B=3\\C=10\end{cases}}\)Thay số vào P được P=1

11 tháng 2 2017

\(\left(Ax+B\right)\left(Cx+D\right)\Leftrightarrow\left(AC\right)x^2+\left(AD+BC\right)x+BD\)Dựa vào phương trình ta thấy:

AC=50; AD+BC=25; BD=-3

BD=-3 mà D=-1=>B=3

AD+BC=25<=> 3C-A=25

AC=50

=>A=5;C=10

Thay A,B,C,D vào ta có:

\(\left(\frac{C}{A}-B\right).D^{2017}=\left(\frac{10}{5}-3\right).\left(-1\right)^{2017}=-1.-1=1\)

11 tháng 2 2017

-3(theo định lí bezout)

15 tháng 5 2018

\(50x^2+25x-3=50x^2+30x-5x-3=\left(10x-1\right)\left(5x+3\right)=\left(Cx+D\right)\left(Ax+B\right)\)

Vì \(D=-1\)nên ta có \(C=10;A=5;B=3\)

Do đó \(P=\left(\frac{C}{A}-B\right)\cdot D^{2017}=-1\cdot\left(\frac{10}{5}-3\right)=-1\cdot-1=1\)

3 tháng 3 2021

Đặt \(g(x)=10x\).

Ta có \(g\left(1\right)=10=f\left(1\right);g\left(2\right)=20=f\left(2\right);g\left(3\right)=30=f\left(3\right)\).

Từ đó \(\left\{{}\begin{matrix}f\left(1\right)-g\left(1\right)=0\\f\left(2\right)-g\left(2\right)=0\\f\left(3\right)-g\left(3\right)=0\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\).

\(\Rightarrow f\left(x\right)=10x+Q\left(x\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow f\left(8\right)+f\left(-4\right)=80+Q\left(x\right).7.6.5+\left(-40\right)+Q\left(x\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-50=40\).

9 tháng 3 2021

Đoạn cuối mình làm nhầm nhé.

Đáng lẽ phải cm Q(x) là đa thức dạng x + m, rồi biến đổi \(f\left(8\right)+f\left(-4\right)=80+Q\left(8\right).7.6.5+\left(-40\right)+Q\left(-4\right).\left(-5\right).\left(-6\right).\left(-7\right)=80-40+\left(m+8\right).7.6.5-\left(m-4\right).5.6.7=12.5.6.7+40=2560\).

Mình đánh vội nên chưa suy nghĩ kĩ.

7 tháng 10 2017

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)

\(=\left(\frac{2017}{c}+\frac{2017}{d}\right)\left(\frac{2017}{d}+c\right)\left(c+d\right)\left(d+\frac{2017}{c}\right)\)

\(=\frac{2017}{c^2d^2}\left(c+d\right)^2\left(cd+2017\right)^2\)

\(=\frac{2017}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(1\right)\)

Ta lại có: 

\(\left(a+b+c+d\right)^2\)

\(=\left(\frac{2017}{c}+\frac{2017}{d}+c+d\right)^2\)

\(=\frac{1}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow M=2017\)

6 tháng 10 2017

LỜI GIẢI 

a+cb+d=acbda+cb+d=a−cb−d

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a+cb+d=acbd=a+c+acb+d+bd=2a2b=ab(1)a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)

a+cb+d=acbd=a+ca+cb+db+d=2c2d=cd(1)a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)

Từ (1)(1) và (2)(2) ta có:

ab=cdab=cd

Đặt:

ab=cd=kab=cd=k {a=bkc=dk⇒{a=bkc=dk

Thay vào tính