K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

mình quên câu này dễ quá nên các bạn đừng trả lời ! nhéeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees

3 tháng 1 2017

làm thê nào ?!?!?!

Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có : a+b+c chia hết cho 4 cà giả sử a,b,c đều lẻ vậy a+b+c k chia hết cho 4 (vô lý ) 

vậy ta luôn chọn dc 4 số có tổng chia hết cho 4 trong  7 số bất kỳ ( thao nguyên tắc dirichlet ) (dpcm)

15 tháng 11 2020

có người giải mất r

21 tháng 8 2016

Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4. 
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có 
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí ! 
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4

21 tháng 8 2016

Cho 7 số tự nhiên bất kì, chứng minh rằng ta luôn chọn được 4 số có tổng chia hết cho 4. 
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có 
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c không chia hết cho 4 vô lí ! 
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4

4 tháng 1 2017

Số lẻ chia cho 2 dư 1

Số lẻ 1 + số lẻ 2 + số lẻ 3 + số lẻ 4 = số chẵn 1 + số chẵn 2 + số chẵn 3 + số chẵn 4 + 1 + 1 + 1 + 1

=> Tổng 4 số lẻ bất kì luôn chia hết cho 4

4 tháng 1 2017

có bài nào dễ hiểu nữa không

7 tháng 12 2017

 - Nếu trong 5 số lẻ đó  có 4 số  có tổng chia hết cho 4 thì bài toán được chứng minh 

- Nếu trong 5 số lẻ đó  có 4 số không có tổng chia hết cho 4 

Khi các tổng S1,S2 ,....,S5 khi chia cho 4 sẽ có thể  dử là 1,2,3 [ 3 khả năng] 

  Do đó theo nguyên lí Đi - rích - lê sẽ tồn tại hai tổng Sm , S [  m > n ] khi đó sẽ cùng dư khi : 4

 -> Sm-Sn chia hết cho 4

    [ a1 + a2+a3+.........+am ]  -  [ a1 + a2+a3+.........+an ] 

 <=>  an+1 + an+2 + ......................... + am chia hết cho 4

  Vật ttoorng các số an+1 + an+2 + ......................... + am chia hết cho 4 

          Từ 2 th  => bài toán được chứng minh

21 tháng 8 2016

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 

Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 

Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3

số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 

Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

21 tháng 8 2016

ọi 5 số bất kì là a1,a2,a3,a4,a5

theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

TH2 :chỉ có 2 số có cùng số dư khi chia cho 3 

GS a1≡a2≡r(mod 3);a3≡a4(mod 3)

nếu r=0 thì a1+a3+a5 chia hết cho 3

nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3

tương tự với r=2

15 tháng 11 2020

4 năm r, chắc bạn ko cần giúp nữa nhỉ

22 tháng 10 2016

cái này không khó dài dòng lắm

AA
23 tháng 10 2016

Bạn tham khảo bài tương tự ở đây nhé.

Bài toán 120 - Học toán với OnlineMath

2 tháng 6 2017

Gọi 7 số đó lần lượt là a1 , a2 , ... , a7 . 

Ta chọn được hai số có tổng chia hết cho 2, chẳng hạn a1 + a2 = 2k1 . Còn lại 5 số, lại chọn được hai số có tổng chia hết cho 2, chẳng

hạn a3 + a4 = 2k2

Còn lại 3 số, lại chọn được hai số có tổng chia hết cho 2, chẳng hạn a5 + a6 = 2k3

Xét ba số k1 , k2 , k3 ta chọn được hai số có tổng chia hết cho 2, chẳng hạn k1 + k2 = 2q

Như vậy : 2k1 + 2k2 = 4q hay a1 + a2 + a3 + a4 = 4q \(⋮\)4

2 tháng 6 2017

Gói 7 thì lần lượt sẽ là :"

a, a2 ... => a7 .

Chọn đc 2 số có tổng chia hết cho 2 là : ( ví dụ )

a1 + a2 = 2k1

Vậy còn lại 5 số ! tiếp tục chọn tổng số chia hết cho 2

a3 + a4 = 2k2

Còn lại 3 số ! : a5 + a6 = 2k3

3 số : ta sẽ chọn số chia hết cho 2 :

Như vậy ta có thể làm :

k1 + k2 = 2q

2k1 + 2k2 = 4q

a1 + a2 + a3 + a4 = 4q : 4

Đáp số : .....

5 tháng 4 2016

Bài 1

6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp

Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn

Bài 2

5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha