Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
ab = bc
\(\Rightarrow\) a = c (1)
bc = cd
\(\Rightarrow\) b = d (2)
cd = de
\(\Rightarrow\) c = e (3)
de = ea
\(\Rightarrow\) d = a (4)
ea = ab
\(\Rightarrow\) e = b (5)
Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e
\(\Rightarrow\) ĐPCM
Hoặc
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
a2
Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:
đây là phép cộng không phải phép nhân
Giả sử: a\(\ne\)b thì:
TH1: a > b
Ta có: Trong 2 lũy thừa bằng nhau mà có cơ số khác nhau thì lũy thừa nào có cơ số lớn hơn thì có số mũ nhỏ hơn
Từ ab = bc mà a > b => b < c
Từ bc = cd mà b < c => c > d
Từ cd = de mà c > d => d < e
Từ de = ea mà d < a => e > a
Từ ea = ab mà e > a => a < b (vô lý vì a > b)
TH2: a < b chứng minh tương tự ta cũng có ea = ab mà e < a => a > b (vô lý vì a < b)
Từ đây ta thấy giả thiết nêu ra \(a\ne b\)là sai vậy a = b
Từ ab = bc = cd = de = ea mà a = b => a = b = c = d = e
boi7y li\
X V
BD
BFD
BG
BRVEVVG
RFGV
F
F
F V
F V
GFNGBH
FHNG
TBGV
FBG V
BGFGB GFBH
VBGFHN
HV FG
HV
FGB
VBGF
G VBF
GBVF
GBG
RBG
Y
RHY
UI
IU
YY
JY
UJH
SDF
YT
H
JNBX
FE
K
B
GJ
FK
FKJH
J
ZGJH
F
V
UM
ab = bc = cd = de = ed
Ta có: de = ed
=> d và e bằng nhau.
Lại có: cd = ed
=> c và e bằng nhau
=> c,d,e bằng nhau
=> bc = bd(Vì c =d)
Mà bc = cd = de = ed
Nên bd= cd = de = ed
=> b,c,d,e bằng nhau.
Tiếp tục có: ab = bc = cd = de = ed
Vì b,c,d,e bằng nhau nên ab = acvà ac = bc = cd = de = ed
=> a,b,c,d bằng nhau.
eachu ko phai ed