Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(4x^2+17xy+9y^2=5xy-\left|y-2\right|\)
\(\Leftrightarrow4x^2+12xy+9y^2=-\left|y-2\right|\Leftrightarrow\left(2x+3y\right)^2=-\left|y-2\right|\)
Do \(\left(2x+3y\right)^2\ge0;-\left|y-2\right|\le0\) nên dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}y-2=0\\2x+3y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x=-3\end{cases}}\)
Thay vào M ta có \(M=\left(-3\right)^3+2.2+3.\left(-3\right)^2.2=31\)
a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)
\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)
\(=x^2+2xy^3-5xy^2-8z+6xy\)
b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(2x-y\right)\left(2x+y\right)\)
\(=\left(2x\right)^2-y^2\)
\(=4x^2-y^2\)
d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)
\(=6xy+15x-2y^2-5y-64xy\)
\(=-58xy+15x-2y^2-5y\)
1.
\(x^2\)+\(y^2\)+2y-6x+10=0
=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0
=> (x-3)\(^2\)+(y+1)\(^2\)=0
pt vô nghiệm
4.
=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0
=> (x+4)\(^2\)+(3y-2)\(^2\)=0
pt vô nghiệm
1/ \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2.3xy+\left(3y\right)^2\)
\(=\left(2x-3y\right)^2\)
2/ \(x^3-y^6=x^3-\left(y^2\right)^3\)
\(=\left(x-y^2\right)\left(x^2+xy^2+y^4\right)\)
Làm tạm 2 phần đợi mik xíu
4x2 - 12xy + 9y2 = ( 2x )2 - 2.2x.3y + ( 3y )2 = ( 2x - 3y )2
x3 - y6 = x3 - ( y2 )3 = ( x - y2 )( x2 + xy2 + y4 )
x6 - 6x4 + 12x2 - 8 = ( x2 )3 - 3.(x2)2.2 + 3.x2.22 - 23 = ( x2 - 2 )3
( x2 + 4y2 - 5 )2 - 16( x2y2 + 2xy + 1 ) = ( x2 + 4y2 - 5 )2 - 42( xy + 1 )2
= ( x2 + 4y2 - 5 )2 - ( 4xy + 4 )2
= [ ( x2 + 4y2 - 5 ) - ( 4xy + 4 ) ][ ( x2 + 4y2 - 5 ) + ( 4xy + 4 ) ]
= ( x2 + 4y2 - 5 - 4xy - 4 )( x2 + 4y2 - 5 + 4xy + 4 )
= [ ( x2 - 4xy + 4y2 ) - 9 ][ ( x2 + 4xy + 4y2 ) - 1 ]
= [ ( x - 2y )2 - 32 ][ ( x + 2y )2 - 12 ]
= ( x - 2y - 3 )( x - 2y + 3 )( x + 2y - 1 )( x + 2y + 1 )
( a + b )3 - ( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3 - a3 - b3
= 3a2b + 3ab2
= 3ab( a + b )
Bài 2 : Phân tích các đa thức sau thành nhân tử :
a, x2 + 7x + 12
= x2 + 3x + 4x + 12
= x(x + 3) + 4(x + 3)
= (x + 3)(x + 4)
b, 3x2 - 8x + 5
= 3x2 - 3x - 5x + 5
= 3x(x - 1) - 5(x - 1)
= (x - 1)(3x - 5)
c, x4 + 5x2 - 6
= x4 - x2 + 6x2 - 6
= x2(x2 - 1) + 6(x2 - 1)
= (x2 - 1)(x2 + 6)
= (x - 1)(x + 1)(x2 + 6)
d, x4 - 34x2 + 225
= x4 - 9x2 - 25x2 + 225
= x2(x2 - 9) - 25(x2 - 9)
= (x2 - 9)(x2 - 25)
= (x - 3)(x + 3)(x - 5)(x + 5)
e, x2 - 5xy + 6y2
= x2 + xy - 6xy + 6y2
= x(x + y) - 6y(x + y)
= (x + y)(x - 6y)
f, 4x2 - 17xy + 13y2
= 4x2 - 4xy - 13xy + 13y2
= 4x(x - y) - 13y(x - y)
= (x - y)(4x - 13y)
Ta có: \(x+y=7\Rightarrow\left(x+y\right)^2=49\Rightarrow x^2+y^2+2xy=49\)
Mà: \(x^2+y^2=25\Rightarrow2xy=24\Rightarrow xy=12\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=7\left(25-12\right)=91\)
(Vì\(x+y=7;x^2+y^2=25;xy=12\))