Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Dấu "=" xảy ra khi: x = y = z
Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)
\(\Rightarrow x=y=z=2\)
Vậy x = y = z = 2
Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có:
(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)²
<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài >
<=> x² + y² + z² ≥ 12 => đpcm
Dấu "=" xảy ra <=> x = y = z = 2
-----------------------------
2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương
Áp dụng bđt cô si cho 2 số thực dương ta có:
xy/z + yz/x ≥ 2y
yz/x + zx/y ≥ 2z
xy/z + zx/y ≥ 2x
Cộng vế với vế 3bđt trên ta được :
xy/z + yz/x + zx/y ≥ x + y + z => đpcm
Dấu "=" xảy ra <=> x = y = z
-----------------------------------
3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y
<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0
<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0
<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y
=> đpcm
Từ đk trên ta có: \(2y^2+2zy+2z^2=2-3x^2\)
<=> \(3x^2+2y^2+2zy+2z^2=2\left(1\right)\)
<=>\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Do (x-y)2≥0; (x-z)2≥0 nên từ(*) suy ra (x+y+z)2≤2
Hay \(-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Dấu "=" xảy ra khi x-y =0 và x-z=0 hay x=y=z
Thay vào (1) ta được 9x2=2 ; x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)
Với x=y=z =x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)thì max=\(\sqrt{2}\), min =\(-\sqrt{2}\)
Vì x+y+z=6 và \(x^2+y^2+z^2=12\)
Ta có \(x^2+y^2+z^2-x+y+z=12-6\)
Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)
=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)
Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)
Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)
Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)
Vậy \(x=y=z=2\)
\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)
Ta có \(\left(x+y+z\right)^2=36\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)
\(\Leftrightarrow12+2xy+2yz+2xz=36\)
\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)
\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)
Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu \(=\)xảy ra khi \(x=y=z\)
Vậy \(x=y=z=2\)