K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

Vì x+y+z=6 và \(x^2+y^2+z^2=12\)

Ta có \(x^2+y^2+z^2-x+y+z=12-6\)

Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)

=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)

Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)

Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)

Vậy \(x=y=z=2\)

19 tháng 10 2017

\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)

Ta có \(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)

\(\Leftrightarrow12+2xy+2yz+2xz=36\)

\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)

\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)

Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)

Dấu \(=\)xảy ra khi \(x=y=z\)

Vậy \(x=y=z=2\)

24 tháng 10 2020

Theo bất đẳng thức 3 biến đối xứng thì ta có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Dấu "=" xảy ra khi: x = y = z

Mà ta thấy: \(\frac{\left(x+y+z\right)^2}{3}=x^2+y^2+z^2=12\)

\(\Rightarrow x=y=z=2\)

Vậy x = y = z = 2

24 tháng 10 2020

tớ  chưa học bđt

6 tháng 11 2017

Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có: 

(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)² 

<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài > 

<=> x² + y² + z² ≥ 12 => đpcm 

Dấu "=" xảy ra <=> x = y = z = 2 

----------------------------- 

2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương 

Áp dụng bđt cô si cho 2 số thực dương ta có: 

xy/z + yz/x ≥ 2y 
yz/x + zx/y ≥ 2z 
xy/z + zx/y ≥ 2x 

Cộng vế với vế 3bđt trên ta được : 

xy/z + yz/x + zx/y ≥ x + y + z => đpcm 

Dấu "=" xảy ra <=> x = y = z 

----------------------------------- 

3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y 

<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0 

<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0 

<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y 

=> đpcm 

7 tháng 1 2021

Từ đk trên ta có:  \(2y^2+2zy+2z^2=2-3x^2\)

<=> \(3x^2+2y^2+2zy+2z^2=2\left(1\right)\)

<=>\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Do (x-y)2≥0; (x-z)2≥0 nên từ(*) suy ra (x+y+z)2≤2

Hay \(-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Dấu "=" xảy ra khi x-y =0 và x-z=0 hay x=y=z

Thay vào (1) ta được 9x2=2 ; x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)

Với x=y=z =x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)thì max=\(\sqrt{2}\), min =\(-\sqrt{2}\)

24 tháng 8 2017

3

k nha

31 tháng 8 2017

bang x