Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
Lời giải:
Ta có:
\(3=xy+yz+xz\leq \frac{(x+y+z)^2}{3}\Rightarrow x+y+z\geq 3\)
Áp dụng BĐT AM-GM:
\(x^3+8=(x+2)(x^2-2x+4)\leq \left(\frac{x+2+x^2-2x+4}{2}\right)^2\)
\(\Rightarrow \sqrt{x^3+8}\leq \frac{x^2-x+6}{2}\Rightarrow \frac{x^2}{\sqrt{x^3+8}}\geq \frac{2x^2}{x^2-x+6}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\geq \underbrace{2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)}_{M}\)
Áp dụng BĐT Cauchy-Schwarz:
\(M\geq \frac{2(x+y+z)^2}{x^2-x+6+y^2-y+6+z^2-z+6}=\frac{2(x+y+z)^2}{x^2+y^2+z^2-(x+y+z)+18}\)
\(\Leftrightarrow M\geq \frac{2(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}\) (do $xy+yz+xz=3$)
Mà :
\(\frac{(x+y+z)^2}{(x+y+z)^2-(x+y+z)+12}-1=\frac{(x+y+z)^2+(x+y+z)-12}{(x+y+z)^2-(x+y+z)+12}=\frac{(x+y+z-3)(x+y+z+4)}{(x+y+z)^2-(x+y+z)+12}\geq 0\) do $x+y+z\geq 0$
Do đó: \(M\geq 1\Rightarrow \text{VT}\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)