Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1
Ta có: \(a^2+b^2+c^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)
Ta lại có:
\(a^3+b^3+c^3=a^2+b^2+c^2\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Vì \(\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\\1-c\ge0\end{matrix}\right.\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu = xảy ra khi: \(\left(a,b,c\right)=\left(1,0,0;0,1,0;0,0,1\right)\)
\(\Rightarrow S=1\)
gt \(\Rightarrow\left\{{}\begin{matrix}b\left(a^2+2ac+c^2\right)+ac\left(a+c\right)+b^2\left(a+c\right)=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+c\right)\left[b\left(a+c\right)+ac+b^2\right]=0\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\\a^{2013}+b^{2013}+c^{2013}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a+b=0\Rightarrow a^{2013}+b^{2013}=0\\b+c=0\Rightarrow b^{2013}+c^{2013}=0\\a+c=0\Rightarrow a^{2013}+c^{2013}=0\end{matrix}\right.\\a^{2013}+b^{2013}+c^{2013}=1\end{matrix}\right.\)
\(\Rightarrow Q=1\)
Bạn nhân a+b+c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lại với nhau rồi trừ 1 ở mỗi vế, phân tích mẫu ra sẽ đc(a+b)(b+c)(c+a)=0
1b/
Áp dụng BĐT Cô-si :
\(\sqrt{\frac{b+c}{a}}\le\frac{\frac{b+c}{a}+1}{2}=\frac{\frac{a+b+c}{a}}{2}=\frac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Chứng minh tương tự:
\(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng theo vế ta được :
\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" không xảy ra nên \(VT>2\).
2a/ Chắc là tính GT của \(x+y\).
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
Do vai trò \(x,y\) là như nhau nên thiết lập tương tự ta có :
\(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)
Cộng theo vế 2 pt ta được :
\(x+y+\sqrt{x^2+2013}+\sqrt{y^2+2013}=\sqrt{x^2+2013}+\sqrt{y^2+2013}-x-y\)
\(\Leftrightarrow2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\)
Vậy....
2b/
Đặt \(A=5a^2+15ab-b^2\) và \(B=3a+b\)
Ta có \(B^2=\left(3a+b\right)^2=9a^2+6ab+b^2\)
Lấy \(A+B^2=5a^2+15a-b^2+9a^2+6ab+b^2\)
\(A+B^2=14a^2+21ab\)
\(A+B^2=7\left(2a+3ab\right)⋮7\)
Mà \(A⋮7\) ( vì \(A⋮49\) ) nên \(B^2⋮7\)
Vì 7 nguyên tố nên \(B⋮7\) ( đpcm )
bn dua vao day nay :https://olm.vn/hoi-dap/detail/105816822455.html