Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
a )AM và AN đều là tiếp tuyến của (O)
còn ABC là cát tuyến
=> AM^2 = AN^2 = AB.AC
b)
Dễ thấy OA vuông góc với MN tại trung điểm MN
=> OA vuông góc với MN tại F
Ta có OMA = ONA = OEA = 90
=> M,N,E đều thuộc đường tròn đường kính OA
=> EMAB nội tiếp
=> góc EMN = góc EAN (1)
Gọi Nt là tia đối của tia AN
Ta có góc INt = 1/2 số đo IN = góc EMN (vì Nt là tiếp tuyến) (2)
Từ (1) và (2)
=> góc EAN = góc INt
=> IN//AE hay IN//AB
c)
đường tròn ngoại tiếp tam giác OEF đi qua điểm E là điểm cố định vì E là trung điểm BC
( câu này hơi ngộ )
Bài này cô giáo mình đã chữa ~^^ tối mát
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
a)Chứng minh AM2=AN2=AB.ACAM2=AN2=AB.AC
b)Đường thẳng ME cắt đường tròn (O) tại I. Chứng minh IN // AB
c)Chứng minh tâm đường tròn ngoại tiếp tam giác OEF nằm trên 1 đường thẳng cố định khi đường tròn (O) thay đổi