K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {dnammv}`

`a,`

`M(x)=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2`

`= (4x^4+5x^4)+(3x^3-3x^3)+(x^2+x^2)-x`

`= 9x^4+2x^2-x`

 

`N(x)=-x^2-x^4+4x^3-x^2-5x^3+3x+1+x`

`=-x^4+(4x^3-5x^3)+(-x^2-x^2)+(3x+x)+1`

`= -x^4-x^3-2x^2+4x+1`

`b,`

`M(x)+N(x)=(9x^4+2x^2-x)+(-x^4-x^3-2x^2+4x+1)`

`= 9x^4+2x^2-x-x^4-x^3-2x^2+4x+1`

`= (9x^4-x^4)-x^3+(2x^2-2x^2)+(-x+4x)+1`

`= 8x^4-x^3+3x+1`

 

`N(x)-M(x)=(-x^4-x^3-2x^2+4x+1)-(9x^4+2x^2-x)`

`= -x^4-x^3-2x^2+4x+1-9x^4-2x^2+x`

`= (-x^4-9x^4)-x^3+(-2x^2-2x^2)+(4x+x)+1`

`= -10x^4-x^3-4x^2+5x+1`

`c,`

`P(x)=M(x)+N(x)`

`P(x)= 8x^4-x^3+3x+1`

Thay `x=-2`

`P(-2)= 8*(-2)^4-(-2)^3+3*(-2)+1`

`= 8*16+8-6+1`

`= 136-6+1=131`

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

16 tháng 5 2022

đây là thu gọn à bn

 

8 tháng 4 2021

`P(x)=x^2+5x^4-3x^2+x^2+4x^4+3x^3-x+5`

`=(5x^4+4x^4)+3x^3+(x^2-3x^2+x^2)-x+5`

`=9x^4+3x^3-x^2-x-5`

`Q(x)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1`

`=-x^4+(4x^3-5x^3)-(x^2+x^2)+(x+3x)-1`

`=-x^4-x^3+4x-1`

`P(x)+Q(x)=9x^4+3x^3-x^2-x-5-x^4-x^3+4x-1`

`=(9x^4-x^4)+(3x^3-x^3)-x^2-(x-4x)-(5+1)`

`=8x^4+2x^3-x^2-5x-6`

`P(x)-Q(x)=9x^4+3x^3-x^2-x-5+x^4+x^3-4x+1`

`=(9x^4+x^4)+(3x^3+x^3)-x^2-(x+4x)-(5-1)`

`=10x^4+4x^3-x^2-5x-4`

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)

\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)

\(=9x^4+3x^2-x-6\)

Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)

\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)

\(=-x^4-x^3-3x^2+4x+5\)

c) Ta có: M(x)+N(x)

\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)

\(=8x^4-x^3+3x-1\)

10 tháng 4 2023

a) Thu gọn và sắp xếp:

\(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(P\left(x\right)=\left(5x^4+4x^4\right)-\left(3x^3-3x^3\right)+\left(x^2+x^2\right)-x+5\)

\(P\left(x\right)=9x^4+2x^2-x+5\)

\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)

\(Q\left(x\right)=x^4-\left(5x^3-4x^3\right)-\left(x^2+x^2\right)+\left(x+3x\right)-1\)

\(Q=x^4-x^3-2x^2+4x-1\)

b) \(P\left(x\right)+Q\left(x\right)\)

\(=\left(9x^4+2x^2-x+5\right)+\left(x^4-x^3-2x^2+4x-1\right)\)

\(=9x^4+2x^2-x+5+x^4-x^3-2x^2+4x-1\)

\(=\left(9x^4+x^4\right)-x^3+\left(2x^2-2x^2\right)-\left(x-4x\right)+\left(5-1\right)\)

\(=10x^4-x^3+3x+4\)

\(P\left(x\right)-Q\left(x\right)\)

\(=\left(9x^4+2x^2-x+5\right)-\left(x^4-x^3-2x^2+4x-1\right)\)

\(=9x^4+2x^2-x+5-x^4+x^3+2x^2-4x+1\)

\(=\left(9x^4-x^4\right)+x^3+\left(2x^2+2x^2\right)-\left(x+4x\right)+\left(5-1\right)\)

\(=8x^4+x^3+4x^2-5x+4\)

21 tháng 6 2020

Giúp tớ đi các cậu ơi, mai phải nộp rồi

21 tháng 6 2020

A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5

       = ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5

       = x4 + 2x2 - x + 5

B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1

        = -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1

        = -x4 - 2x2 - 2x + 1

M(x) = A(x) + B(x) 

         = x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )

         =  x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1

         = -3x + 6

N(x) = A(x) - B(x) 

        = x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )

        = x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1

        = 2x4 + 4x2 + x + 4

M(x) = 0 <=> -3x + 6 = 0

              <=> -3x = -6

              <=> x = 2

Vậy nghiệm của M(x) là 2

Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4a. Tính P(x) + Q(x);b. Tính P(x) - Q(x).Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6a. Tính M(2) b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)c. Tìm nghiệm của đa thức A(x)Bài 3. Tìm nghiệm của các đa thức sau:a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 e. 2x2 - 6           ...
Đọc tiếp

Bài 1 . cho hai đa thức: P(x) = 4x- 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4

a. Tính P(x) + Q(x);

b. Tính P(x) - Q(x).

Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6

a. Tính M(2) 

b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)

c. Tìm nghiệm của đa thức A(x)

Bài 3. Tìm nghiệm của các đa thức sau:

a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 

e. 2x- 6                   f. x(x - 1)                    g. x + 2x                  h. x( x + 2 )

Bài 4. cho hai đa thức: f(x) = 2x+ 3x- x + 1 - x2 - x4 - 6x3

                                     g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2

a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.

b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)

c. Tìm nghiệm của đa thức h(x)

Bài 5. Tìm nghiệm của các đa thức:

a. 9 - 3x                b. -3x + 4                 c. x- 9                   d. 9x- 4

e. x2 - 2                f. x( x - 2 )                g. x2 - 2x                  h. x(x2 + 1 )

1

Tách ra, dài quá mn đọc là mất hứng làm đó.

10 tháng 4 2020

dsssws