K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ngày 4/4 vừa qua tại Madinah, Arập Saudi, đã diễn ra cuộc thi Olympic Toán các nước vùng Vịnh lần thứ 5.Đề thi Olympic vùng Vịnh được đánh giá là không khó, và bài toán dưới đây được coi là khó nhất cuộc thi. Mời bạn đọc thử sức.Giả sử có 4 người A, B, C và D đánh tennis đôi với nhau. Họ có thể tổ chức các trận đấu như sau: trận đấu A và B đấu với C và D, trận tiếp theo A và C...
Đọc tiếp

Ngày 4/4 vừa qua tại Madinah, Arập Saudi, đã diễn ra cuộc thi Olympic Toán các nước vùng Vịnh lần thứ 5.

Đề thi Olympic vùng Vịnh được đánh giá là không khó, và bài toán dưới đây được coi là khó nhất cuộc thi. Mời bạn đọc thử sức.

Giả sử có 4 người A, B, C và D đánh tennis đôi với nhau. Họ có thể tổ chức các trận đấu như sau: trận đấu A và B đấu với C và D, trận tiếp theo A và C đánh với B và D, cuối cùng A và D đánh với B và C. Cái hay của cách sắp xếp này là hai điều kiện sau được thỏa mãn:

a) Hai cây vợt bất kỳ chung đội với nhau đúng 1 lần.

b) Hai cây vợt bất kỳ đấu ở hai đội khác nhau đúng 2 lần.

Hỏi có thể sắp xếp các trận đấu sao cho các điều kiện a và b được thỏa mãn trong các trường hợp sau? Giải thích rõ câu trả lời.

i) Có 5 người chơi.

ii) Có 7 người chơi.

iii) Có 9 người chơi.

Kiệt trả lời xem nha

3
29 tháng 4 2016

ko pit

29 tháng 4 2016

Cóp trên mạng:

dap-an-bai-toan-kho-nhat-cuoc-thi-olympic-vung-vinh-2016

dap-an-bai-toan-kho-nhat-cuoc-thi-olympic-vung-vinh-2016-1

4 tháng 9 2023

Đúng là 1 câu hỏi rất hay bn ak!

4 tháng 9 2023

Bài này mình giải theo phương trình nghiệm nguyên : 

2x2 = y(y + 1) 

Nhưng mà giải không ra nghiệm :))

Tìm trên mạng được cái này. Hi vọng giúp được bạn : 

https://vi.wikipedia.org/wiki/Số_chính_phương_tam_giác

8 tháng 6 2023

câu 2: 

a) Trước tiên ta chứng minh f đơn ánh. Thật vậy nếu f (n1) = f (n2) thì

f (f(n1) + m) = f (f(n2) + m)
→n1 + f(m + 2003) = n2 + f(m + 2003) → n1 = n2

b) Thay m = f(1) ta có

f (f(n) + f(1)) = n + f (f(1) + 2003)
= n + 1 + f(2003 + 2003)
= f (f(n + 1) + 2003)

Vì f đơn ánh nên f(n)+f(1) = f(n+1)+2003 hay f(n+1) = f(n)+f(1)−2003. Điều này dẫn đến
f(n + 1) − f(n) = f(1) − 2003, tức f(n) có dạng như một cấp số cộng, với công sai là f(1) − 2003,
số hạng đầu tiên là f(1). Vậy f(n) có dạng f(n) = f(1) + (n − 1) (f(1) − 2003), tức f(n) = an + b.
Thay vào quan hệ hàm ta được f(n) = n + 2003, ∀n ∈ Z
+.