Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
\(\frac{\left(m+1\right)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(m+1\right)x+m}-1\le0\)
\(\Leftrightarrow\frac{x^2+2mx+3m+4}{mx^2+2\left(m+1\right)x+m}\le0\)
Để tập nghiệm của BPT đã cho là R
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2mx+3m+4\ge0\\mx^2+2\left(m+1\right)x+m< 0\end{matrix}\right.\) \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=m^2-3m-4\le0\\m< 0\\\Delta'_2=\left(m+1\right)^2-m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le m\le4\\m< 0\\2m+1< 0\end{matrix}\right.\) \(\Rightarrow-1\le m< -\frac{1}{2}\)
- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn
- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)
Do \(\alpha\) là nghiệm nên:
\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)
\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)
\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)
\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)
\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)
TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)
TH2: Nếu \(\left|\alpha\right|>1\)
\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)
\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)