K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

giả sử 2015 số đã cho là:

a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

\(\vec{ }\)

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

\(\vec{ }\)

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

26 tháng 6 2015

iả sử 2015 số đã cho là:

abé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

$\vec{ }$→

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

$\vec{ }$→

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

6 tháng 7 2015

giả sử 2015 số đã cho là:

abé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015

Vì tích 3 số bất kỳ luôn luôn dương 

nên trong dãy số có nhiều nhất 2 số âm

$\vec{ }$→

a1;a2 <0

ta có: a1.a2014.a2015 <0

mà đề cho:a1.a2014.a2015>0

$\vec{ }$→

a1;a2 không thể âm

Do vậy 2015 số đã cho phải là số dương

13 tháng 1 2022

Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)

Và ta có \(n+2016-n=2015⋮2015\)

Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015

13 tháng 1 2022

Quên, phải lấy \(n+2015-n=2015\) chứ.

19 tháng 9 2016

vào cpvm mà hỏi thầy

8 tháng 3 2018

Ta có A= 1/2015 + 2/2016 + 3/2017 + ... +2016/4030- 2016

          A= 2015-2014/2015 + 2016-2014/2016 +...+4030-2014/4030-2016

           A= 2015/2015-2014/2015+ 2016/2016-2014/2016 + ..... +4030/4030-2014/4030 -2016

           A= 1-2014/2015 + 1-2014/2016 +....+1-2014/4030 -2016

           A= (1+1+1+1+........+1) -(2014/2015+2014/2016+......+2014/4030) -2016

            A=2016  -  2014.(1/2015+1/2016+....+1/4030)   -2016

             A= (2016 - 2016 ) - 2014. ( 1/2015+1/2016+.....+1/4030)

             A=-2014.(1/2015+1/2016+....+1/4030)

   mà B = 1/2015+1/2016+....+1/4030

      nên A : B = -2014

8 tháng 3 2018

các bn hãy ủng hộ mk nhé !!! Thanks everyone!!!

3 tháng 4 2020

Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)

Đặt \(b_i=-a_i\left(1\le i\le51\right)\)

Xét 102 số : \(a_i\)và \(b_i\)

Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)

=> \(a_i+a_j⋮100\)

29 tháng 9 2016

Do tổng của n số gấp đôi tổng của các số còn lại nên tổng đó bằng 2/3 tổng các số từ 1 đến 2015.

Ta tính tổng đó: \(S=\frac{2}{3}\left(\frac{\left(2015+1\right).2015}{2}\right)=1354080.\)

Gọi n số thỏa mãn yêu cầu đề bài là \(1\le a_1< a_2< ...< a_n\le2015.\)

Ta thấy \(a_1\ge1;a_2\ge a_1+1=2;...;a_n\ge n.\)

Vậy thì để tồn tại nhiều số nhất thì ta chọn : \(a_1=1;a_2=2;...;a_{n-1}=n-1;a_n\)

Tính tổng (n -1) số đầu tiên: \(S_{n-1}=\frac{\left(n-1+1\right)\left(n-1\right)}{2}=\frac{n\left(n-1\right)}{2}\le1354080\)

Ta chọn n max thỏa mãn điều kiện bên trên. Vậy n = 1645.

Vậy n max là 1645 với dãy số:

\(\hept{\begin{cases}a_1=1;a_2=2;...;a_{1644}=1644\\a_{1645}=1354080-\frac{1645.1644}{2}=1890\end{cases}}\) 

Tương tự: \(a_n\le2015;a_{n-1}\le a_n-1=2014;...\)

Để chọn được n min thì \(\hept{\begin{cases}a_n=2015;a_{n-1}=2014;...;a_2=2015-n+2.\\a_1\end{cases}}\)

Tổng n - 1 số là : \(S_{n-1}=\frac{\left(2015+2015-n+2\right)\left(n-1\right)}{2}=\frac{\left(4032-n\right)\left(n-1\right)}{2}< 1354080\)

Vậy n min = 852. 

Khi đó \(\hept{\begin{cases}a_2=1165;a_3=1166;...;a_{852}=2015\\a_1=1354080-\frac{851.3180}{2}=990\end{cases}}\)

Vậy n max = 1645 và n min = 852.

29 tháng 9 2016

Điểm mấu chốt là nhận ra \(\hept{\begin{cases}1\le a_1;2\le a_2;...\\2015\ge a_n;2014\ge a_{n-1};...\end{cases}}\)