K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Ta có A= 1/2015 + 2/2016 + 3/2017 + ... +2016/4030- 2016

          A= 2015-2014/2015 + 2016-2014/2016 +...+4030-2014/4030-2016

           A= 2015/2015-2014/2015+ 2016/2016-2014/2016 + ..... +4030/4030-2014/4030 -2016

           A= 1-2014/2015 + 1-2014/2016 +....+1-2014/4030 -2016

           A= (1+1+1+1+........+1) -(2014/2015+2014/2016+......+2014/4030) -2016

            A=2016  -  2014.(1/2015+1/2016+....+1/4030)   -2016

             A= (2016 - 2016 ) - 2014. ( 1/2015+1/2016+.....+1/4030)

             A=-2014.(1/2015+1/2016+....+1/4030)

   mà B = 1/2015+1/2016+....+1/4030

      nên A : B = -2014

8 tháng 3 2018

các bn hãy ủng hộ mk nhé !!! Thanks everyone!!!

a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)

b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    

\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)

\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)

=> \(\frac{2016}{2017}\)và    \(\frac{2015}{2016}\)<    \(\frac{2017}{2016}\)và    \(\frac{2016}{2015}\)

Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)

\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

14 tháng 8 2016

a)\(=\frac{2017}{2016}.\frac{3}{4}-\frac{1}{2016}.\frac{3}{4}\)

\(=\frac{3}{4}\left(\frac{2017}{2016}-\frac{1}{2016}\right)\)

\(=\frac{3}{4}.1\)

\(=\frac{3}{4}\)

b)\(=\frac{2015}{2016}\left(\frac{1}{2}+\frac{1}{3}-\frac{5}{6}\right)\)

\(=\frac{2015}{2016}.0\)

\(=0\)