Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}-x=\frac{3}{5}\Rightarrow x=\frac{2}{3}-\frac{3}{5}\Rightarrow x=\frac{1}{15}\Rightarrow-3.x=-3.\frac{1}{15}\Rightarrow-3.x=-0,2\)
\(1,1\times201.1-201.1\)
\(=201,1.\left(1,1-1\right)\)
\(=201,1.0,1\)
\(=20,11\)
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
⇒ \(\frac{5}{8}x=\frac{23}{4}+\frac{1}{8}\)
⇒ \(\frac{5}{8}x=\frac{47}{8}\)
⇒ \(x=\frac{47}{8}:\frac{5}{8}\)
⇒ \(x=\frac{47}{5}\)
1)\(\frac{11\cdot3^{29}-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)
2)\(|2x-3|+2^3\cdot3=25\Rightarrow x=1;2\)
3) \(x183y=61831\Rightarrow x=6;y=1\)
4)\(B=\frac{n-1}{n-4}\Rightarrow n=1;3;5;7\)
5)\(\left(2x+1\right)\cdot\left(y^2-5\right)=12\Rightarrow x=1;y=3\)
mình là người đúng nhất ở bài 3 vì 61831 mới chia 2,5,9 dư 1
k cho mình nhé
Câu 8:
Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}\Rightarrow a=\pm\frac{18}{5}\)
+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}\Rightarrow b=\pm\frac{24}{5}\)
Vậy bộ số \(\left(x;y\right)\) là \(\left(\frac{18}{5};\frac{24}{5}\right);\left(\frac{-18}{5};\frac{-24}{5}\right)\)