Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(y=a-x\) vào biểu thức \(P\).Vì \(x+y=a\); \(x,y\ge0\); \(0\le x,y\le a\)
Ta có : \(P=40x+x\left(a-x\right)=-x^2+\left(40+a\right)x\)
Nếu \(a\ge40\):
\(P=-\left[x^2+\left(40+a\right)x\right]\)
\(P=\left(\frac{40+a}{2}\right)^2-\left[x^2-2x\cdot\frac{40+a}{2}+\left(\frac{40+a}{2}\right)^2\right]\)
\(P=\left(\frac{40+a}{2}\right)^2-\left(x-\frac{40+a}{2}\right)^2\)
Dễ thấy \(\left(x-\frac{40+a}{2}\right)^2\ge0\)với mọi \(0\le x\le a\)
\(\Leftrightarrow P\le\left(\frac{40+a}{2}\right)^2\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x=\frac{40+a}{2}\\b=\frac{a-40}{2}\end{cases}}\)
Nếu \(a< 40\)
\(P=-x^2+\left(40+a\right)x\)
\(P=40x-ax+a^2-\left(x-a\right)^2a\)
\(P=x\left(40-a\right)+a^2-\left(x-a\right)^2\)
Vì \(a< 40\); \(x\le a\)
\(\Rightarrow x\left(40-a\right)\le a\left(40-a\right)\)
\(\left(x-a\right)^2\ge0\)với mọi \(0\le x\le a\)
Do đó : \(P\le a\left(40-a\right)+a^2=40a\)
Dấu " = " xảy ra : \(\hept{\begin{cases}x=a\\y=0\end{cases}}\)
Vậy ....
Nguồn : h.o.c.24
Lời giải:
Thay $y=120-x$ vào biểu thức $P$:
$P=40x+x(120-x)=-x^2+160x=6400-(x^2-160x+80^2)=6400-(x-80)^2\leq 6400$ do $(x-80)^2\geq 0$
Vậy $P_{\max}=6400$. Giá trị này đạt được khi $x-80=0\Rightarrow x=80; y=40$
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
*Max
Có: \(x^2+4\ge4x\)
\(y^2+4\ge4y\)
\(z^2+4\ge4z\)
\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)
Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)
Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)
\(=\frac{5.12+12}{4}=18\)
"=" KHI x = y= z = 2
*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge-6\)
Dấu "=" xảy ra <=> x + y + z = 0
Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)
Dấu "=" <=> x + y + z = 0 và x2 + y2 + z2 = 12
bạn ơi mình giải thế này thì sao nhỉ:
đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)
\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)
dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)
bạn xem thử hộ mik cái =)
Xét \(\Delta=\text{}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)
=> Pt luôn có hai nghiệm pb
Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)
\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)
\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)
\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)
\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)
Vậy m=0
Lời giải:
Thay $y=a-x$ vào biểu thức $P$. Vì $x+y=a; x,y\geq 0$ nên $a\geq 0; 0\leq x,y\leq a$
Ta có:$P=40x+x(a-x)=-x^2+(40+a)x$
Nếu $a\geq 40$:
$P=-[x^2-(40+a)x]=(\frac{40+a}{2})^2-[x^2-2.x.\frac{40+a}{2}+(\frac{40+a}{2})^2]=(\frac{40+a}{2})^2-(x-\frac{40+a}{2})^2$
Dễ thấy $(x-\frac{40+a}{2})^2\geq 0$ với mọi $a\leq x\geq 0$
Do đó: $P\leq \left(\frac{40+a}{2})^2$ hay $P_{\max}=\left(\frac{40+a}{2}\right)^2$
Giá trị này đạt đc khi $x=\frac{40+a}{2}, b=\frac{a-40}{2}$
Nếu $a< 40$:
$P=-x^2+(40+a)x=40x-ax+a^2-(x-a)^2$=x(40-a)+a^2-(x-a)^2$
Vì $a< 40; x\leq a\Rightarrow x(40-a)\leq a(40-a)$
$(x-a)^2\geq 0$ với mọi $0\leq x\leq a$. Do đó: $P\leq a(40-a)+a^2=40a$
Vậy $P_{\max}=40a$ khi $x=a; y=0$
Lời giải:
Thay $y=a-x$ vào biểu thức $P$. Vì $x+y=a; x,y\geq 0$ nên $a\geq 0; 0\leq x,y\leq a$
Ta có:$P=40x+x(a-x)=-x^2+(40+a)x$
Nếu $a\geq 40$:
$P=-[x^2-(40+a)x]=(\frac{40+a}{2})^2-[x^2-2.x.\frac{40+a}{2}+(\frac{40+a}{2})^2]=(\frac{40+a}{2})^2-(x-\frac{40+a}{2})^2$
Dễ thấy $(x-\frac{40+a}{2})^2\geq 0$ với mọi $0\leq x\leq a$
Do đó: $P\leq \left(\frac{40+a}{2}\right)^2$ hay $P_{\max}=\left(\frac{40+a}{2}\right)^2$
Giá trị này đạt đc khi $x=\frac{40+a}{2}, b=\frac{a-40}{2}$
Nếu $a< 40$:
$P=-x^2+(40+a)x=40x-ax+a^2-(x-a)^2a=x(40-a)+a^2-(x-a)^2$
Vì $a< 40; x\leq a\Rightarrow x(40-a)\leq a(40-a)$
$(x-a)^2\geq 0$ với mọi $0\leq x\leq a$. Do đó: $P\leq a(40-a)+a^2=40a$
Vậy $P_{\max}=40a$ khi $x=a; y=0$