Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi L' là giao của AD với BK
=>BL'//AC
=>BL;/AC=DB/DC
BL=BL'
BL=BK
=>BK=BL'
=>BK/AC=BK'/AC=DB/DC
mà BK/AC=SB/SC
nên cần chứng minh SB/SC=DB/DC
DB/DC*FC/FA*EA/EB=1
SB/SC*FC/FA*EA/EB=1
=>DB/DC=SB/SC
=>A,D,L thẳng hàng
a: Xét ΔMBA và ΔMAC có
góc MAB=góc MCA
góc M chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MC/MB=AB^2/AC^2
b: EF//AM
AM vuông góc OA
=>EF vuông góc OA
=>góc AEF+góc OAE=90 độ
=>góc AEF+(180 độ-góc AOB)/2=90 độ
=>góc AEF+90 độ-góc ACB=90 độ
=>gócAEF=góc ACB
=>góc BEF+góc BCF=180 độ
=>BEFC nội tiếp
=>góc BEC=góc BFC=90 độ
Xét ΔABC có
BF,CE là đường cao
BF căt CE tại H
=>H là trực tâm
=>AH vuông góc CB tại D
a: Xét ΔMBA và ΔMAC có
góc MAB=góc MCA
góc M chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MC/MB=AB^2/AC^2
b: EF//AM
AM vuông góc OA
=>EF vuông góc OA
=>góc AEF+góc OAE=90 độ
=>góc AEF+(180 độ-góc AOB)/2=90 độ
=>góc AEF+90 độ-góc ACB=90 độ
=>gócAEF=góc ACB
=>góc BEF+góc BCF=180 độ
=>BEFC nội tiếp
=>góc BEC=góc BFC=90 độ
Xét ΔABC có
BF,CE là đường cao
BF căt CE tại H
=>H là trực tâm
=>AH vuông góc CB tại D