K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

Áp dụng bđt bunhia có:

\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{25}{4}\ge\left(x+y\right)^2\)\(\Leftrightarrow x+y\le\dfrac{5}{2}\)

Dấu = xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\x^2+4y^2=5\end{matrix}\right.\Leftrightarrow\) \(\left\{{}\begin{matrix}16y^2+4y^2=5\\x=4y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=2\end{matrix}\right.\)

8 tháng 8 2016

\(C=x^2+y^2-3x+4y+5\)

\(=x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+y^2+2\times y\times2+2^2-2^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(y+2\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2+\left(y+2\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Vậy Min C = \(-\frac{5}{4}\) khi x = \(\frac{3}{2}\) và y = \(-2\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Câu 1: Cho tam giác ABC vuông tại A, AB = 4cm; AC= 5cm , các điểm D,E lấn lượt trên cạnh AB,AC sao cho BD=AE=x(cm).Tính giá trị x để SBEC nhỏ nhất.Câu 2: Chiều dài , chiều rộng của hình chữ nhật la 1 số nguyên tố và chu vi của hình chữ nhật đó là 72 cm. Tính GTLN của Shình chữ nhật đó.Câu 3: Tìm 3 số x,y,z thỏa mãnX2 +y2 +z2 +2 – 4y +6z = -14Câu 4: Cho x,y nguyên dương, thoãn mãn xy -5x +2y= 30. Tính tổng có...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A, AB = 4cm; AC= 5cm , các điểm D,E lấn lượt trên cạnh AB,AC sao cho BD=AE=x(cm).Tính giá trị x để SBEC nhỏ nhất.

Câu 2: Chiều dài , chiều rộng của hình chữ nhật la 1 số nguyên tố và chu vi của hình chữ nhật đó là 72 cm. Tính GTLN của Shình chữ nhật đó.

Câu 3: Tìm 3 số x,y,z thỏa mãn

X2 +y2 +z2 +2 – 4y +6z = -14

Câu 4: Cho x,y nguyên dương, thoãn mãn xy -5x +2y= 30. Tính tổng có GT x.

Câu 5: Cho a+ b = 3; a2 +b2 =7. Giá trị biểu thức: a4+b4.

Câu 6: GTLN của biểu thức: P= (x4+3y2+25)2

Câu 7: Số dư khi chia đa thức f(x) = 8x3-1 chi g(x) = 4x2 +2x +1

Câu 8: Tổng số đo góc ngoài và góc trong của 1 đa giác bằng 504. Tính số cạnh đa giác đó.

Câu 9: Cho x,y,z thõa mãn x+y+z=3. Tính GTLN P= xy+yz+zx

Câu 10 :Tìm số tự nhiên n biết: 1+2+3+…+232=2n-1

Câu 11: Tính tổng các số nguyên biết: IxI <2016

Câu 12: Tìm số tận cùng của tích A=(2160 -1)(152 -73 )

Câu 13: x2 -8x +15=0 .Tìm x

Câu 14: Tìm số dư khi chia 19992016 : 5

Câu 15: Tìm số dư khi chia : 513+511-510-40 cho 43

Câu 16: Tính tổng các số nguyên dương x sao cho x+56 ;x+113 đều là số chính phương

Câu 17: Tính GTBT A = 12 -22+32-42+…-20162+20172

Câu 10: Tìm số cạnh của đa giác có 35  đường chéo

1
24 tháng 2 2017

Mình sắp thi Violimpic Toán Cấp Huyện rồi...

Giúp mình với♥♥♥

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

DD
13 tháng 11 2021

\(S=2x+4y+6z\le2\sqrt{\left[x^2+\left(2y\right)^2+\left(3z\right)^2\right]\left(1^2+1^2+1^2\right)}=2\sqrt{3.3}=6\)

Dấu \(=\)khi \(\hept{\begin{cases}x^2+4y^2+9z^2=3\\\frac{x}{1}=\frac{2y}{1}=\frac{3z}{1}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\).

\(4=x^2+y^2-xy=\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(x-y\right)^2\ge\frac{1}{2}\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+y^2\le8\)

Dấu \(=\)khi \(x=y=\pm2\).

\(4=x^2+y^2-xy=\frac{3}{2}\left(x^2+y^2\right)-\frac{1}{2}\left(x+y\right)^2\le\frac{3}{2}\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+y^2\ge\frac{8}{3}\)

Dấu \(=\)khi \(x=-y=\pm\frac{2}{\sqrt{3}}\).

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..