K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PT
1
CM
25 tháng 5 2018
O 1 có đỉnh là O, hai cạnh là Ox và Oy
O 2 có đỉnh là O, hai cạnh là Oy và Oz
AT
13 tháng 8 2016
Nhận thấy tứ giác MFNE có góc M và N vuông --> góc MFN+góc MEN= 2 vuông (*)
Lại có các tam giác AFB và MEN đồng dạng (vì có góc NME=gocFAB và góc MNE =góc FBA), suy ra góc AFB=góc MEN --> góc MFN=góc MEN (**), từ (*); (**) suy ra góc MFN=góc MEN =1 vuông
--> tứ giác MENF là hình chữ nhật, từ đó dễ dàng suy ra tiếp FE vuông góc với AB
b) Gọi I ; K lần lượt là trung điểm của O1O2 và MN. Áp dụng Talét dễ dàng tính được IK=5
--> KD^2=ID^2-IK^2 =9^2 -5^2 =56 --> CD=2.KD= 4√14
khó nhỉ ?
a) \(\widehat{O}_1=65^o\)
Có : \(\widehat{O_1}+\widehat{O_2}=180\) (kề bù)
\(=>\widehat{O_2}=180^o-65^o=115^o\)
Mà theo hình vẽ : \(\widehat{O_2}\) đối đỉnh \(\widehat{O}_4\)
Suy ra: \(\widehat{O_4}=\widehat{O_2}=115^o\)(kề bù)
Rồi có : \(\widehat{O_4}+\widehat{O_3}=180^o=>\widehat{O_3}=65^o\)
b) \(O_1=2O_2\)
Và : \(O_1+O_2=180^{^O}=>O_1=180^{^O}-O_2\)
\(=>2O_2=180^{^O}-O_2\)
\(=>3O_2=180^{^O}=>O_2=60^{^O}\)
\(O_1=2O_2=>O_1=2.60^{^O}=120^{^O}\)
c) \(\widehat{O_1}-\widehat{O_2}=20^o\)
\(\Leftrightarrow\widehat{O_1}=20+\widehat{O_2}\)
Và : \(\widehat{O_1}+\widehat{O_2}=180^{^O}\)
Ta có hệ sau : \(\left\{{}\begin{matrix}\widehat{O_1}=20^{^o}+\widehat{O_2}\\\widehat{O_1}+\widehat{O_2}=180^{^O}\end{matrix}\right.\)
\(=>20^{^O}+\widehat{O_2}+\widehat{O_2}=180^{^O}\)
\(=>2\widehat{O_2}=160^{^O}=>\widehat{O_2}=80^{^O}\)
\(\widehat{O_1}-80^{^O}=20^{^O}=>\widehat{O_1}=100^{^O}\)
d) \(O_3+O_1=136^{^O}\)
Mà : \(O_3=O_1\) (đối đỉnh)
\(=>O_3=O_1=\dfrac{136^{^O}}{2}=68^{^O}\)