Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Q\left(\dfrac{1}{2}\right)=-3.\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2\)
\(Q\left(\dfrac{1}{2}\right)=-3.\dfrac{1}{4}+\dfrac{1}{2}-2\)
\(Q\left(\dfrac{1}{2}\right)=-\dfrac{3}{4}+\left(-\dfrac{3}{2}\right)\)
\(Q\left(\dfrac{1}{2}\right)=-\dfrac{9}{4}\)
\(b,P\left(1\right)=-3.1^2+2.1+1\)
\(P\left(1\right)=-3.1+2+1\)
\(P\left(1\right)=-3+2+1\)
\(P\left(1\right)=0\)
Vậy x = 1 là nghiệm của đa thức P(x)
\(c,H\left(x\right)=\left(-3x^2+2x+1\right)-\left(-3x^2+x-2\right)\)
Bài 2 mk giải luôn nhé
f(x)=x^2+4x-5=x^2-x+5x-5
=x(x-1)+5(x-1)
=(x+5)(x-1)
Vậy x=-5 hoặc x=1 là nghiệm của đa thức f(x)
\(x^4\ge0;3x^2\ge0;1>0\Rightarrow x^4+3x^2+1>0\Rightarrowđpcm\)
a, P= \(\left(\dfrac{-2}{3}x^3y^2\right)\left(\dfrac{1}{2}x^2y^5\right)\)
= \(\dfrac{-2}{3}x^3y^2.\dfrac{1}{2}x^2y^5\)
= \(\dfrac{-1}{3}x^5y^7\)
b, tại x= -1 y=1 ta co:
P= \(\dfrac{-1}{3}\left(-1\right)^5.1^7\) = 1/3
a: \(P=\dfrac{-2}{3}\cdot\dfrac{1}{2}x^3y^2\cdot x^2y^5=\dfrac{-1}{3}x^5y^7\)
Hệ số là -1/3
Phần biếnlà \(x^5;y^7\)
b: Khi x=-1 và y=1 thì \(P=\dfrac{-1}{3}\cdot\left(-1\right)^5\cdot1^7=\dfrac{1}{3}\)
a) \(A+B=2x^3+x^2-4x+x^3+3+6x+3x^3-2x+x^2-5\)
\(=6x^3+2x^2-2\)
b) \(A-B=\left(2x^3+x^2-4x+x^3+3\right)-\left(6x+3x^3-2x+x^2-5\right)\)
\(=-8x+8\)
c) Đặt \(f\left(x\right)=-8x+8\)
Ta có: \(f\left(x\right)=0\Leftrightarrow-8x+8=0\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)là nghiệm của đa thức f(x).