Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 100 số đó không có số nào bằng nhau a1 > a2>a3>.....a100
Mà a1,a2,a3,...,a100 thuộc Z
\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=\frac{101}{2}\)(vôlý)
Vậy có ít nhất 2 số bằng nhau trong dãy số trên
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100
Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100
⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)
⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50
⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150
<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)
⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau
\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2
\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)
\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)
\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)
=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)
Câu hỏi của Tran nam khanh ly - Toán lớp 6 - Học toán với OnlineMath
Em xem bài ở link này nhé!
ta có:
a3=a1.a2=1.-1=-1
a4=a2.a3=-1.-1=1
a5 , a6 ,a7 làm tương tự
ta gộp a1,a2,a3 vào 1 cặp a4 ,a5, a6 vào một cặp aa7,a8,a9...
ta thấy dãy số trên theo quy luật 1,-1,-1 rồi 1,-1,-1
ta gộp 100 số 1 cặp 3 số thì có 100:3=33(dư 1)
theo quy luật ta có số bị thừa ra là 1
vậy a100=1
Em tham khảo tại đây nhé.
Câu hỏi của Tran nam khanh ly - Toán lớp 6 - Học toán với OnlineMath
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử \(0< a_1< a_2< a_3< ...< a_{100}\)
Vậy \(a_1\ge1;a_2\ge2;....;a_{100}\ge100\)suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}\le1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< 1+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(99 phân số \(\frac{1}{2}\))
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{100}}< \frac{1}{2}.\left(2+99\right)=\frac{1}{2}.101=\frac{101}{2}\)trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh
cảm ơn bạn