Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Giả thiết: aa' // bb'
cc' cắt aa' và bb' lần lượt tại A và B
Am là phân giác của góc BAa; Bn là phân giác của góc ABb'
Kết luận: Am // Bn
Giải:
Vì Am là phân giác của BAa => \(BAm=\frac{BAa}{2}\) (1)
Bn là phân giác của ABb' =>\(ABn=\frac{ABb'}{2}\)(2)
Từ (1) và (2) lại có: BAa = ABb' (so le trong)
=> BAm = ABn
Mà BAm và ABn là 2 góc so le trong
=> Am // Bn (đpcm)
giả sử đường thẳng d căt 2 đường thẳng song song tại A, B, đường phân giác góc A và B cắt nhau tại M
2 góc trong cùng phía có tổng = 180 độ
=> (MBA + MAB) = 180/2 = 90 độ
=> BMA = 180 - MAB - MBA = 180 - 90 = 90 độ
hay AM vuông góc với BM
làm tương tự bài này nhé
Ta có: a // b => E = I (hai góc so le trong)
Mà: E1 = \(\frac{E}{2}\)
I1 = \(\frac{I}{2}\)
=> E1 = E1 và có vị trí so le trong => m // n
Có : góc 1 = góc 2 ( so le trong )
=> 1/2 góc 1 = 1/2 góc 2
=> góc a = góc b
Mà 2 góc ở vị trí so le trong
=> 2 tia phân giác của 2 góc so le trong bằng nhau ( đpcm )
Không hiểu gì thì ib ạ ;33
giả sử a//b cắt c tại 2 điểm A và B, d là phân giác góc A, e là phân giác góc B
=> gócA = gócB (so le trong)=> A1 = B1
mà A1 và B1 là 2 góc so le trong của d và e
=> d//e (đpcm)Chúc bạn học tốt !!!
Ta có: ab // cd và \(\widehat{aOK}=\widehat{OKd}\)(2 góc so le trong)\(\Rightarrow\frac{1}{2}\widehat{aOK}=\frac{1}{2}\widehat{OKd}\)(1)
Mặt khác: Om là phân giác góc aOK =>\(\widehat{aOm}=\widehat{mOK}=\frac{1}{2}\widehat{aOK}\)(2)
On là phân giác góc OKd =>\(\widehat{nOK}=\widehat{nOd}=\frac{1}{2}\widehat{OKd}\)(3)
Từ (1);(2);(3)\(\Rightarrow\widehat{mOK}=\widehat{nOK}\)=> Om // Kn (2 góc so le trong bằng nhau)
Chứng minh tương tự ta cũng được Og // Oh
Vậy nếu 2 đường thẳng song song cắt 1 đường thẳng thứ 3 thì các tia phân giác của 2 góc so le trong song song với nhau.
Vì một đường thẳng cắt hai đường thẳng song song nên các góc sole trong bằng nhau
Vậy tia phân giác của 2 góc so le trong chia 2 góc đó mỗi góc làm 2 góc bằng nhau
Gọi hai góc chung cạnh kết hợp với tia phân giác tạo thành hai góc bằng nhau là A1 và B3
===> A1=B3=1/2 hai góc so le trong bằng nhau
Vậy chúng song song với nhau(đpcm)
Bút danh XXX
Theo đề bài, \(xx'//yy'\) gọi giao điểm của đường thẳng d vs x và y lần lượt là A và B.
Vì Aa là tia phân giáo của \(\widehat{xAB}\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\frac{\widehat{xAB}}{2}=\frac{1}{2}\widehat{xAB}\)
Vì Bb là tia phân giác của \(\widehat{ABy'}\)
\(\Rightarrow\widehat{B_1}=\widehat{B_2}=\frac{\widehat{ABy}'}{2}=\frac{1}{2}\widehat{ABy'}\)
mà \(\widehat{xAB}=\widehat{ABy'}\) (2 góc so le trong)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow Aa//Bb\left(dpcm\right)\)
hok tốt!