Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
Với x, y là các số thực dương bất kì, theo BĐT Cô-si. Ta có:
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)
\(\Rightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT trên ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
Tương tự \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
Cộng theo vế ba bất đẳng thức trên ta được:
\(VT\left(1\right)\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+cb}{c+a}+\frac{cb+ca}{a+b}\right)=\frac{a+b+c}{4}=\frac{1}{4}\)(đpcm)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
P/s: Bạn nói đúng, lớp 6 giải được rồi! Như mình nè , có điều không chắc thôi! =)))
\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)
\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)
\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\text{Giả sử }a< b< c\)
\(\Rightarrow a\le2;b\le3;c\le5\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)
Do \(a,b,c\in Z^+\)=> \(\frac{a}{a+b}>\frac{a}{a+b+c}\)\(\frac{b}{b+c}>\frac{b}{a+b+c}\)và \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Giả sử \(a\ge b\ge c\)Ta có \(a,b,c\in Z^+\)và \(a\ge b\)\(\Rightarrow\)\(c+a\ge c+b\)\(\Rightarrow\frac{c}{c+a}\le\frac{c}{c+b}\Rightarrow\frac{b}{b+c}+\frac{c}{c+a}\le\frac{b}{b+c}+\frac{c}{c+b}=1\)
Do \(a,b,c\in Z^+\)\(\Rightarrow\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\le2\)