K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án

8 tháng 7 2017

\(-1=-\left(a^2+b^2+c^2\right)=>-1\le2\left(ab+bc+ca\right).\\ < =>\left(a+b+c\right)^2\ge0.\)
Luôn đúng .
\(a^2+b^2+c^2=1\ge ab+bc+ca\)

NV
14 tháng 1 2021

\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)

\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)

Đặt \(m+n=t\Rightarrow0\le t\le2\)

\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)

24 tháng 11 2021

Thầy ơi sao bên này là (2-mn) qua bên kia lại là \(\left[8-\left(m+n\right)^2\right]\) , dưới mẫu là (m+1)(n+1) qua bên này là \(\text{(m+n+2)}^2\)

 

2 tháng 11 2018

\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)

Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)

\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)

\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)

2 tháng 11 2018

Tiếp

\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)

Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)

18 tháng 6 2021

\(a^2+b^2+c^2=1\Rightarrow\left(a+b+c\right)^2=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow1+2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow ab+bc+ca\ge-\dfrac{1}{2}\)

Ta c/m: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng \(\forall a,b,c\)

Do đó \(ab+bc+ca\le1\)

18 tháng 6 2021

- Áp dụng bdt Co-si, ta có:

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

=> \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

<=> \(a^2+b^2+c^2\ge ab+bc+ca\)

<=> \(1\ge ab+bc+ca\)

Dấu "=" xảy ra <=> a = b = c = \(\pm\sqrt{\dfrac{1}{3}}\)

                                                                                                                                                                                                                                                                                                           

15 tháng 12 2015

\(\text{Đ/k}\Rightarrow a\ge a^2;\text{ }b\ge b^2;\text{ }c\ge c^2\)

\(VP\ge1+a^2b^2+b^2c^2+c^2a^2\)

Có: \(\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\Rightarrow a^2b^2+b^2c^2+c^2a^2+1\ge a^2b^2c^2+a^2+b^2+c^2\)

\(\ge a^4+b^4+c^4\)