K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)

Đây nè @Võ Hồng Phúc(Phúc bím)

4 tháng 11 2019

nè nè chi

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)

CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)

Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

(�2+�2)(�2+�2)≥(��+��)2=��+��

CMTT : (�2+�2)(�2+�2)≥��+��

Ta có :(�2+�2)(�2+�2)+(�2+�2)(�2+�2)≥��+��+��+��=(�+�)(�+�)

9 tháng 11 2019

BĐT tương đương vs

(\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\))^2\(\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)( BĐT bunyakovsky ) luôn đúng

\(\Rightarrow\) đpcm

21 tháng 7 2019

Em thử nha, sai thì thôia) bình phương và rút gọn, ta cần chứng minh:

\(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

Tới đây có thể áp dụng bđt bunhiacopki và thu được đpcm. Nếu không thì

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi ad = bc

21 tháng 7 2019

\( a)\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} \left( * \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {{{\left( {a + b} \right)}^2}{{\left( {c + d} \right)}^2}} \ge {a^2} + 2ac + {c^2} + {b^2} + 2bd + {d^2}\\ \Leftrightarrow \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge ac + bd\left( 1 \right) \)

Nếu \(ac+bd<0\) thì (1) đúng

Nếu \(ac+bd\ge0\) thì (1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (đúng)

Dấu "=" của bất đẳng thức (*) xảy ra:

\(\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\\left(ad-bc\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\ab-bc=0\end{matrix}\right.\)