K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

Xét ΔMNP có MJ là đường trung tuyến và G là trọng tâm

nên M,G,J thẳng hàng và \(MG=\dfrac{2}{3}MJ\)

Xét ΔMNP có MJ là đường trung tuyến

nên \(\overrightarrow{MJ}=\dfrac{1}{2}\left(\overrightarrow{MN}+\overrightarrow{MP}\right)\)

=>\(\overrightarrow{MG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{MN}+\overrightarrow{MP}\right)=\dfrac{1}{3}\overrightarrow{MN}+\dfrac{1}{3}\overrightarrow{MP}\)

=>Chọn C

NV
20 tháng 4 2022

\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{1^2+\left(-2\right)^2}=\sqrt{5}\)

(C) tâm A đi qua B nên có bán kính \(R=AB=\sqrt{5}\)

Phương trình:

\(\left(x-1\right)^2+\left(y-1\right)^2=5\)

NV
12 tháng 7 2021

- Với \(m=1\) BPT trở thành \(2>0\) (thỏa mãn) (1)

- Với \(m\ne1\) tập nghiệm của BPT là R khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1>0\\\Delta'=\left(m-1\right)^2-2\left(m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-1\right)\left(m-3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\1< m< 3\end{matrix}\right.\)

\(\Leftrightarrow1< m< 3\) (2)

Kết hợp (1) và (2): với \(1\le m< 3\) thì BPT có tập nghiệm R

NV
12 tháng 7 2021

c.

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1>0\\\left(2x+1\right)^2>\left(x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\x^2>1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

d.

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\2-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2-x\ge0\\x>\left(2-x\right)^2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2-5x+4< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>2\\\left\{{}\begin{matrix}x\le2\\1< x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\1< x\le2\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

NV
12 tháng 7 2021

2.

Do \(a\in\left(\dfrac{\pi}{2};\pi\right)\Rightarrow sina>0\)

\(\Rightarrow sina=\sqrt{1-cos^2a}=\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

NV
25 tháng 7 2021

3.

Do \(sin\left(x+k2\pi\right)=sinx\Rightarrow sin\left(x+2020\pi\right)=sinx\)

\(sin\left(\dfrac{\pi}{2}+x\right)=cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}-x\right)=cos\left(-x\right)=cosx\)

\(A=\dfrac{sinx+sin3x+sin5x}{cosx+cos3x+cos5x}=\dfrac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}\)

\(=\dfrac{2sin3x.cosx+sin3x}{2cos3x.cosx+cos3x}=\dfrac{sin3x\left(2cosx+1\right)}{cos3x\left(2cosx+1\right)}\)

\(=\dfrac{sin3x}{cos3x}=tan3x\)

NV
25 tháng 7 2021

4.

a.

\(\overrightarrow{CB}=\left(2;-2\right)=2\left(1;-1\right)\)

Do đường thẳng d vuông góc BC nên nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình đường thẳng d đi qua \(A\left(-1;2\right)\) và có 1 vtpt là \(\left(1;-1\right)\) là:

\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)

b.

Gọi \(I\left(a;b\right)\) là tâm đường tròn, ta có \(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a+1;b-2\right)\\\overrightarrow{BI}=\left(a-3;b-2\right)\\\overrightarrow{CI}=\left(a-1;b-4\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a+1\right)^2+\left(b-2\right)^2\\BI^2=\left(a-3\right)^2+\left(b-2\right)^2\\CI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

Do I là tâm đường tròn qua 3 điểm nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-2\right)^2=\left(a-3\right)^2+\left(b-2\right)^2\\\left(a+1\right)^2+\left(b-2\right)^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8a=8\\4a+4b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\)

\(\overrightarrow{AI}=\left(2;0\right)\Rightarrow R=AI=\sqrt{2^2+0^2}=2\)

Pt đường tròn có dạng:

\(\left(x-1\right)^2+\left(y-2\right)^2=4\) 

NV
20 tháng 7 2021

2.

Xét BPT: \(\left(x+3\right)\left(4-x\right)>0\Leftrightarrow-3< x< 4\) \(\Rightarrow D_1=\left(-3;4\right)\)

Xét BPT: \(x< m-1\) \(\Rightarrow D_2=\left(m-1;+\infty\right)\)

Hệ có nghiệm khi và chỉ khi \(D_1\cap D_2\ne\varnothing\)

\(\Leftrightarrow m-1< 4\)

\(\Leftrightarrow m< 5\)

3.

\(\dfrac{\pi}{24}=\dfrac{180^0}{24}=7^030'\)

4.

\(x^2+y^2-x+y+4=0\) không phải đường tròn

Do \(\left(\dfrac{1}{2}\right)^2+\left(-\dfrac{1}{2}\right)^2-4< 0\)

NV
20 tháng 7 2021

5.

\(f\left(x\right)=ax^2+bx+c\) có \(\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac< 0\end{matrix}\right.\) thì \(f\left(x\right)\) không đổi dấu trên R

6.

\(sin2020a=sin\left(2.1010a\right)=2sin1010a.cos1010a\)

7.

Công thức B sai

\(cos^2a+sin^2a=1\) , không phải \(cos2a\)

5 tháng 7 2021

Câu 17: Ý A

\(\Delta:2x+3y-2=0\)

Kẻ đt d vuông góc với \(\Delta\) và đi qua M => Đường thẳng d có dạng: \(d:-3x+2y+c=0\)

\(M\in\left(d\right)\Rightarrow-3.3+2.3+c=0\Leftrightarrow c=3\)

\(\Rightarrow d:-3x+2y+3=0\)

Tọa độ hình chiếu vuông góc của M lên đt \(\Delta\) là nghiệm của hệ: \(\left\{{}\begin{matrix}2x+3y-2=0\\-3x+2y+3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

Câu 18: B

Hàm có TXĐ là R khi \(x^2-2mx-2m+3\ge0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\left(lđ\right)\\\Delta\le0\end{matrix}\right.\)\(\Rightarrow4m^2-4\left(-2m+3\right)\le0\)\(\Leftrightarrow-3\le m\le1\)

Có 5 giá trị nguyên của m

Câu 19: A

Bpt vô nghiệm khi \(x^2-mx+1>0;\forall x\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow m^2-4< 0\Leftrightarrow-2< m< 2\)

Câu 20: D

\(D\in\Delta\Rightarrow D\left(t;-3t-2\right)\)

\(\Rightarrow\overrightarrow{AD}\left(t+1;-3t-2\right)\)

\(\overrightarrow{BC}\left(2;-1\right)\)

Vì ABCD là hình thang có một đáy là AD

\(\Rightarrow\)\(AD//BC\)

\(\Rightarrow\overrightarrow{AD}\) và \(\overrightarrow{BC}\) cùng phương

\(\Leftrightarrow\left(t+1\right)\left(-1\right)=2\left(-3t-2\right)\)\(\Leftrightarrow t=-\dfrac{3}{5}\)\(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{-1}{5}\right)\)

10 tháng 11 2021

26B

Chọn D

27 tháng 9 2021

Giải ra giúp e vs ạ😭😭