Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE
Xét tam giác KEF và tam giác HFE
có EF chung
góc EKF=góc EHF = 900
góc KEF=góc HFE (CMT)
suy ra tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)
suy ra EK = HF
mà DK+KE=DE, DH+HF=DF
lại có DE=DF (CMT)
suy ra KD=DH
b) xét tam giác DKO và tam giác DHO
có DO chung
góc DKO = góc DHO = 900
DK = DH (CMT)
suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)
suy ra góc KDO = góc HDO
suy ra DO là tia phân giác của góc EDF (1)
c) Vì DK = DH suy ra tam giác DKH cân tại D
suy ra góc DKH= góc DHK
suy ra góc DKH+ góc DHK + góc KDH = 1800
suy ra góc DKH=(1800 - góc KDH) :2 (2)
Tam giác DEF cân tại D
suy ra góc DEF + góc DFE + góc EDF = 1800
suy ra góc DEF = (1800 - góc KDH) :2 (3)
Từ (2) và (3) suy ra góc DKH = góc DEF
mà góc DKH đồng vị với góc DEF
suy ra KH // EF
d) Xét tam giác DEI và tam giác DFI
có DE = DF (CMT)
DI chung
EI = IF
suy ra tam giác DEI = tam giác DFI (c.c.c)
suy ra góc EDI = góc FDI
suy ra DI là tia phân giác của góc EDF (4)
Từ (1) và (4) suy ra DO trùng DI
hay ba điểm D, O, I thẳng hàng.
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
a: Xét ΔADB và ΔADC có
AD chung
DB=DC
AB=AC
Do đó: ΔADB=ΔADC
b: ΔADB=ΔADC
=>\(\widehat{BAD}=\widehat{CAD}\)
ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
=>DE=DF
=>ΔDEF cân tại D
c: Ta có: ΔAED=ΔAFD
=>AE=AF
Ta có: AE+EB=AB
AF+FC=AC
mà AE=AF và AB=AC
nên EB=FC
Xét ΔEBC và ΔFCB có
EB=FC
\(\widehat{EBC}=\widehat{FCB}\)
BC chung
Do đó: ΔEBC=ΔFCB
=>\(\widehat{ECB}=\widehat{FBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: D là trung điểm của BC
AD\(\perp\)BC tại D
Do đó: AD là đường trung trực của BC(2)
Từ (1),(2) suy ra A,D,I thẳng hàng
a) Xét 2 tam giác vuông EDB và EIB có
EB chung
Góc EDB = Góc EIB = 90độ
Góc DEB = Góc IEB (vì EB là phân giác của Góc E)
=> tam giác EDB = tam giác EIB (ch-gn)
b) Nối H với F
Ta có EI = ED (vì tam giác EDB = tam giác EIB) => EF - EI = EH - ED
=> DH = IF
Xét 2 tam giác vuông FHD và HFI có:
HF chung
DH = IF (cmt)
=> tam giác FHD = tam giác HFI (ch-cgv)