K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

a(a + 2) < 0

th1 : 

a > 0 và a + 2 < 0

=> a > 0 và a < -2

=> vô ló

th2 : 

a(a + 2) < 0

=> a < 0 và a + 2 > 0

=> a < 0 và a > -2

=> -2 < a < 0

=> a = -1

15 tháng 11 2017

câu 1:

+nếu \(p=2\Rightarrow p+10=12;p+14=16\)không phải số NT => loại

+nếu \(p=3\Rightarrow p+10=13;p+14=17\)là số NT => thỏa mãn

+ nếu \(p>3\), vì p là số NT nên p có dạng \(3k+1;3k+2\)

- với \(p=3k+1\Rightarrow p+14=3k+15⋮3\Rightarrow\)không phải số NT => loại

- với \(p=3k+2\Rightarrow p+10=3k+12⋮3\Rightarrow\)không phải số NT => loại

vậy p=3

15 tháng 11 2017

ughadu au ha ghadufy hauydfj yh

Bài 5. Cho a b Z b , ; 0   . Nếu có số nguyên q sao cho a bq  thì: A. a là ước của b B. b là ước của a C. a là bội của b D. Cả B, C đều đúng DẠNG 2. CÁC CÂU HỎI VẬN DỤNG Bài 6. Tìm x là số nguyên, biết 12 ; 2 x x   A. 1 B.     3; 4; 6; 12 C.   2; 1 D. { 2; 1;1;2;3;4;6;12}   Bài 7. Từ 1 đến 100 có bao nhiêu số là bội của 3? A. 30 số B. 31 số C. 32 số D. 33 số Bài 8. Tất cả những...
Đọc tiếp

Bài 5. Cho

a b Z b , ; 0   . Nếu có số nguyên
q
sao cho
a bq 
thì:

A.
a
là ước của

b B.
b
là ước của
a

C.
a
là bội của

b D. Cả B, C đều đúng

DẠNG 2. CÁC CÂU HỎI VẬN DỤNG
Bài 6. Tìm
x
là số nguyên, biết

12 ; 2 x x  

A.
1 B.

    3; 4; 6; 12

C.
  2; 1 D.

{ 2; 1;1;2;3;4;6;12}  

Bài 7. Từ 1 đến 100 có bao nhiêu số là bội của 3?
A. 30 số B. 31 số C. 32 số D. 33 số
Bài 8. Tất cả những số nguyên
n
thích hợp để

n 4 
là ước của
5
là:

A.
1; 3; 9;3   B.

1; 3; 9; 5    C. 3;6

D.   3; 9

Bài 9. Cho tập hợp

M x x x       | 3, 9 9

. Khi đó trong tập
M
:

A. Số
0
nguyên dương bé nhất B. Số
9
là số nguyên âm lớn nhất

C. Số đứng liền trước và liền sau số
0
là 3

3 D. Các số nguyên
x

6;9;0;3; 3; 6; 9   

DẠNG 3. VẬN DỤNG CAO
Bài 10. Tìm các số nguyên
x
thỏa mãn

 x x   3 1   

A.
x    3; 2;0;1
B.
x  1;0;2;3
C.
x    4;0; 2;2
D.
x  2;0;1;3

Bài 11. Cho
n
thỏa mãn
6 11 n  là bội của

n2. Vậy n đạt giá trị:

A. n1;3
B.
n0;6
C
n0;3
D.
n0;1

3
10 tháng 12 2023

Bạn viết lại đề bài đi bạn, đề bài bị lỗi nhiều quá.

10 tháng 12 2023

mình copy lên lỗi á

Câu 5

Nếu p lẻ thì 3p lẻ nên 3p+7 chẵn,mà 3p+7 lầ số nguyên tố

Suy ra 3p+7=2(L)

Khí đó p chẵn,mà p là số nguyên tố nên p=2

Vậy p=2

Câu 3

Ta có:\(\overline{ab}-\overline{ba}=9\times\left(a-b\right)=3^2\times\left(a-b\right)\)

Mà ab-ba là số chính phương nên 3^2X(a-b) là số chính phương

Suy ra a-b là số chính phương

Mà 0<a-b<9 nên \(a-b\in\left\{1;4\right\}\)

Với a-b=1 mà 0<b<a nên ta có bảng sau:

a23456789
b12345678

Với a-b=4 mà a>b>0 nên ta có bảng sau:

a56789
b12345

Vậy ..............

=>a+2>0 và a<0

=>-2<a<0

mà a nguyên

nên a=-1

6 tháng 1 2022

A = 3/n + 2 mà A là một số nguyên, 2 là một số nguyên => 3/n là một số nguyên => 3 ⋮ n => n ∊ Ư(3) = {-3;-1;1;3}. Vậy n ∊ {-3;-1;1;3}

21 tháng 4 2015

Câu 3 :

a) Đặt n2 + 2006 = a2 (a\(\in\)Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k \(\in\)N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số