Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>HB=HC>HD
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: \(\widehat{ABG}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABG}=\widehat{ACE}\)
Xét ΔABG và ΔACE có
AB=AC
\(\widehat{ABG}=\widehat{ACE}\)
BG=CE
Do đó: ΔABG=ΔACE
=>AG=AE
=>ΔAGE cân tại A
c: Xét ΔHAB vuông tại H và ΔKAC vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)(ΔABG=ΔACE)
Do đó: ΔHAB=ΔKAC
=>AH=AK
Xét ΔAGE có \(\dfrac{AH}{AG}=\dfrac{AK}{AE}\)
nên HK//GE
=>HK//BC
a: Xét ΔBDA vuông tại D và ΔBEC vuông tại E có
BA=BC
góc B chung
=>ΔBDA=ΔBEC
b: ΔBDA=ΔBEC
=>BE=BD
=>ΔBED cân tại B
c: Xét ΔCAM có
CD vừa là đường cao, vừa là trung tuyến
=>ΔCAM cân tại C
=>góc CMD=góc CAM=góc ECA