K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

 chọn C

14 tháng 10 2021

\(\Rightarrow5x^2-15x-5x^2=45\)

\(\Rightarrow-15x=45\Rightarrow x=-3\)

=> Chọn C

27 tháng 7 2023

a

\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)

b

\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)

c

\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)

a: =>(2x+15)(x^2+4)=0

=>2x+15=0

=>2x=-15

=>x=-15/2

b; =>(x-2)(5x-3)=0

=>x=2 hoặc x=3/5

c: =>(x+3)(2-x)=0

=>x=2 hoặc x=-3

29 tháng 12 2021

Chọn B

AH
Akai Haruma
Giáo viên
28 tháng 12 2021

Lời giải:

$x^3+3x^2-5x+a=x^2(x-1)+4x(x-1)-(x-1)+(a-1)=(x-1)(x^2+4x-1)+(a-1)$

Vậy $x^3+3x^2-5x+a$ chia $x-1$ dư $a-1$. Để đây là phép chia hết thì $a-1=0$

$\Leftrightarrow a=1$
Đáp án B.

6 tháng 11 2021

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)

6 tháng 11 2021

 

\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)

\(x^2+6x+9-x^2+9=0\)

\(6x+18=0\)

\(6x=-18\)

\(x=-3\)

Vậy x=-3

\(b,5x^3+20x=0\)

\(5x\left(x^2+4\right)=0\)

\(Th1:5x=0=>x=0\)

\(Th2:x^2+4=0\)

\(x^2=-4\)(vô lý)

Vậy x=0

20 tháng 10 2021

\(a,\Leftrightarrow\left(x-4\right)\left(x^2+5\right)>0\\ \Leftrightarrow x-4>0\left(x^2+5\ge5>0\right)\\ \Leftrightarrow x>4\\ b,\Leftrightarrow\left(x-y\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\left(vô.lí.do.x\ne y\right)\\x=\dfrac{5}{3}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow S=x^2-x=\dfrac{25}{9}-\dfrac{5}{3}=\dfrac{10}{9}\)

a: \(\Leftrightarrow x^2\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x-1\right)=0\)

=>x=-1 hoặc x=1

b: \(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

hay \(x\in\left\{-1;2;-2\right\}\)

c: \(x^3+x^2+4=0\)

\(\Leftrightarrow x^3+2x^2-x^2-2x+2x+4=0\)

\(\Leftrightarrow\left(x+2\right)\cdot\left(x^2-x+2\right)=0\)

=>x+2=0

hay x=-2

e: \(\Leftrightarrow x^4-2x^3-3x^3+6x^2-x^2+2x+3x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-3x^2-x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x+1\right)\left(x-1\right)=0\)

hay \(x\in\left\{2;3;-1;1\right\}\)

16 tháng 11 2021

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

10 tháng 9 2021

a)5(x+1)(x-x-2)=0

=>5(x+1).-2=0

=>5(x+1)=0

=>x+1=0

=>x=-1

10 tháng 9 2021

a)5x.(x+1)-5.(x+1).(x-2)=0

⇒5x(x+1)-(5x-10)(x+1)=0

⇒(x+1)(5x-5x+10)=0

⇒10(x+1)=0

⇒x+1=0⇒x=-1

 

29 tháng 12 2023

Bài 2

a) 5x² + 30y

= 5(x² + 6y)

b) x³ - 2x² - 4xy² + x

= x(x² - 2x - 4y² + 1)

= x[(x² - 2x + 1) - 4y²]

= x[(x - 1)² - (2y)²]

= x(x - 1 - 2y)(x - 1 + 2y)

29 tháng 12 2023

Bài 3:

a: \(2x\left(x-3\right)-x+3=0\)

=>\(2x\left(x-3\right)-\left(x-3\right)=0\)

=>(x-3)(2x-1)=0

=>\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)

b: \(\left(3x-1\right)\left(2x+1\right)-\left(x+1\right)^2=5x^2\)

=>\(6x^2+3x-2x-1-x^2-2x-1=5x^2\)

=>\(5x^2-x-2=5x^2\)

=>-x-2=0

=>-x=2

=>x=-2