Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Xét ΔODC có AB//DC
nên \(\dfrac{AB}{DC}=\dfrac{OA}{OD}=\dfrac{OB}{OC}\) và \(\dfrac{AO}{AD}=\dfrac{BO}{BC}\)(1)
Xét ΔAOM và ΔADC có
\(\widehat{AOM}=\widehat{ADC}\)
\(\widehat{OAM}=\widehat{DAC}\)
Do đó: ΔAOM~ΔADC
=>\(\dfrac{OM}{DC}=\dfrac{AO}{AD}\)(2)
Xét ΔBON và ΔBCD có
\(\widehat{BON}=\widehat{BCD}\)
\(\widehat{OBN}=\widehat{CBD}\)
Do đó: ΔBON~ΔBCD
=>\(\dfrac{BO}{BC}=\dfrac{ON}{CD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OM}{CD}=\dfrac{ON}{CD}\)
=>OM=ON
Xét ΔADC có OM//DC
nên \(\dfrac{OM}{DC}=\dfrac{AM}{AD}\left(1\right)\)
Xét ΔBDC có ON//DC
nên \(\dfrac{ON}{DC}=\dfrac{BN}{BC}\left(2\right)\)
Xét hình thang ABCD có MN//AB//CD
nên \(\dfrac{AM}{MD}=\dfrac{BN}{NC}\)
=>\(\dfrac{MD}{MA}=\dfrac{CN}{BN}\)
=>\(\dfrac{MD+MA}{MA}=\dfrac{CN+BN}{BN}\)
=>\(\dfrac{AD}{AM}=\dfrac{BC}{BN}\)
=>\(\dfrac{AM}{AD}=\dfrac{BN}{BC}\left(3\right)\)
Từ (1),(2),(3) suy ra OM=ON
c. -Xét △ADC có: OM//DC (gt).
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)
\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).
-Xét △BDC có: ON//DC (gt).
\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)
\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)
-Từ (1), (2),(3) suy ra:
\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)
\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
a: Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔAOB∼ΔCOD
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
hay \(OA\cdot OD=OB\cdot OC\)
b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)
\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
\(a,MN//DC\Rightarrow MN//AB\Rightarrow ABNM\) là hình thang
Ta có \(\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ADC}\left(đồng.vị\right)\\\widehat{BNM}=\widehat{BCD}\left(đồng.vị\right)\\\widehat{ADC}=\widehat{BCD}\left(ABCD.là.hthang.cân\right)\end{matrix}\right.\Rightarrow\widehat{AMN}=\widehat{BNM}\)
\(\Rightarrow ABNM\) là hthang cân
\(b,\left\{{}\begin{matrix}DM=NC\left(hthang.cân.DMNC\right)\\\widehat{MDC}=\widehat{NCD}\left(hthang.cân.DMNC\right)\\Cạnh.DC.chung\end{matrix}\right.\Rightarrow\Delta DMC=\Delta CND\left(c.g.c\right)\\ \Rightarrow\widehat{NDC}=\widehat{MCD}\Rightarrow\Delta ODC.cân.tại.O\Rightarrow OC=OD\)
Ta có \(\left\{{}\begin{matrix}\widehat{ODC}=\widehat{OCD}\left(cm.trên\right)\\\widehat{ODC}=\widehat{ONM}\left(so.le.trong\right)\\\widehat{OCD}=\widehat{OMN}\left(so.le.trong\right)\end{matrix}\right.\Rightarrow\widehat{ONM}=\widehat{ONM}\)
\(\Rightarrow\Delta OMN.cân.tại.O\\ \Rightarrow OM=ON\)