K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)

b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)

\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)

3 tháng 12 2018

a) Ta có: 1 - 3 < 0

⇒ Hàm số trên nghịch biến trên R

NV
12 tháng 12 2021

Hàm nghịch biến trên R khi:

\(3-2k< 0\Rightarrow k>\dfrac{3}{2}\)

12 tháng 12 2021

để hàm số nghịch biên thì\(3-2k< 0\Rightarrow2k>3\Rightarrow k>\dfrac{3}{2}\)

Câu 2.a) Thực hiện phép tính 5V45 – 7V/125 + 5 +4√20.b) Với x > 0 và x # 9. Cho biểu thức A = Gdương.x-6√x+9/Rút gọn A rồi tìm x để A nhận giá trịCâu 3.Giải phương trình V 4x2 – 4x+1=x+10.Câu 4.a) Hàm số y = 2x + 3 đồng biến hay nghịch biến ? Vì saob) Vẽ đồ thị hàm số y + 3 rồi tính góc tạo bởi đồ thị hàm số y = 2x + 3 và trục Ox (làm tròn kết quả DAđến độ).Câu 5.Cho nửa đường fron (O) đường kính AB 2R. Về hai...
Đọc tiếp

Câu 2.
a) Thực hiện phép tính 5V45 – 7V/125 + 5 +4√20.
b) Với x > 0 và x # 9. Cho biểu thức A = G
dương.
x-6√x+9/
Rút gọn A rồi tìm x để A nhận giá trị
Câu 3.
Giải phương trình V 4x2 – 4x+1=x+10.
Câu 4.
a) Hàm số y = 2x + 3 đồng biến hay nghịch biến ? Vì sao
b) Vẽ đồ thị hàm số y + 3 rồi tính góc tạo bởi đồ thị hàm số y = 2x + 3 và trục Ox (làm tròn kết quả DA
đến độ).
Câu 5.
Cho nửa đường fron (O) đường kính AB 2R. Về hai tiếp tuyến Ax và By của (O) (A và B là hai tiếp điểm, Ax và By cũng nằm trên một nửa mặt phẳng bờ là đường thẳng AB). Qua điểm M bất kì nằm trên nữa đường trốn (O) (M khác A và B), vẽ tiếp tuyến thứ ba với đường tròn cắt Ax và By lần lượt tại C và D. Gọi M là giao điểm của AD và BC.
a) Chứng minh bốn điểm A,, M, O cùng thuộc một đường tròn.
b) Chứng minh tích 4). BD không đổi.

1

Câu 3: 

=>|2x-1|=x+10

TH1: x>=1/2

=>2x-1=x+10

=>x=11(nhận)

TH2: x<1/2

=>1-2x=x+10

=>-3x=9

=>x=-3(nhận)

17 tháng 6 2016

\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)

Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)

Chứng minh: 

\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)

\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)

\(\text{+Nếu }ac+bd>0\)

\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)

Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.

Vậy ta có đpcm.

Dấu bằng xảy ra khi \(ad=bc\)

\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)

\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)

\(=\sqrt{64}=8.\)

Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)

Vậy GTNN của biểu thức là 8.