K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2020

\(a,|2x-2019|=1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-2019=1\\2x-2019=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=2020\\2x=2018\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1010\\x=1009\end{cases}}\)

Vậy ............

\(b,\left(2-x\right)^5=-32\)

\(\Leftrightarrow\left(2-x\right)^5=\left(-2\right)^5\)

\(\Leftrightarrow2-x=-2\)

\(\Leftrightarrow x=4\)

Vậy ..........

21 tháng 8 2023

3) \(...\Rightarrow2^x\left(2^3+1\right)=36\)

\(\Rightarrow2^x.9=36\)

\(\Rightarrow2^x=4\)

\(\Rightarrow2^x=2^2\Rightarrow x=2\)

4) \(...\Rightarrow4^{x+1}-4^x=12\)

\(\Rightarrow4^x\left(4-1\right)=12\)

\(\Rightarrow4^x.3=12\)

\(\Rightarrow4^x=4=4^1\Rightarrow x=1\)

5) \(...\Rightarrow5^{x+1}\left(5^2-1\right)=3000\)

\(\Rightarrow5^{x+1}.24=3000\)

\(\Rightarrow5^{x+1}=125\)

\(\Rightarrow5^{x+1}=5^3\)

\(\Rightarrow x+1=3\)

\(\Rightarrow x=2\)

6) Bạn xem lại đề

a. \(2^x.2^3+2^x=36\)

\(2^x\left(2^3+1\right)=36\)

\(2^x.9=36\)

\(2^x=4\Rightarrow x=2\)

b. \(4^x.4^1-\left(2^2\right)^x=12\)

\(4^x.4-4^x=12\)

\(4^x\left(4-1\right)=12\)

\(4^x.3=12\)

\(4^x=4\)

x = 1

c. \(5^x.5^3-5^x.5^1=3000\)

\(5^x\left(5^3-5^1\right)=3000\)

\(5^x.120=3000\)

\(5^x=25\)

x = 2

d. \(4^{x+1}=2^{2x}\)

\(4^x.4=\left(2^2\right)^x\)

\(4^x.4=4^x\)

Có vẻ như câu 4 này để bài thiếu 

9 tháng 11 2021

\(1,\Rightarrow3^{x-3}=\left(3^2\right)^8:\left(3^3\right)^5=3^{16}:3^{15}=3^1\\ \Rightarrow x-3=1\\ \Rightarrow x=4\\ 2,\Rightarrow7^x\left(1+7^2\right)=350\\ \Rightarrow7^x=\dfrac{350}{50}=7=7^1\\ \Rightarrow x=1\)

9 tháng 11 2021

\(3,\Rightarrow2^{2+2x+2}-2^{2x}=240\\ \Rightarrow2^{2x}\left(2^4-1\right)=240\\ \Rightarrow2^{2x}=\dfrac{240}{15}=16=2^4\\ \Rightarrow2x=4\Rightarrow x=2\)

a: \(\left(x+5\right)^2>=0\forall x\)

\(\left(2y-8\right)^2>=0\forall y\)

Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)

b: \(\left(x+3\right)\left(2y-1\right)=5\)

=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)

=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)

Đặt \(A=2^{2x}+2^{2x+1}+...+2^{2x+1918}\)

=>\(2\cdot A=2^{2x+1}+2^{2x+2}+...+2^{2x+1919}\)

=>\(A=2^{2x+1919}-2^{2x}\)

Theo đề, ta có; \(2^{2x+1919}-2^{2x}=2^{1923}-2^4\)

=>\(2^{2x}\cdot\left(2^{2019}-1\right)=2^4\left(2^{2019}-1\right)\)

=>2x=4

=>x=2

a: \(\Leftrightarrow\left(\dfrac{13}{4}:x\right)\cdot\left(-\dfrac{5}{4}\right)=\dfrac{-10}{6}-\dfrac{5}{6}=\dfrac{-15}{6}=\dfrac{-5}{2}\)

\(\Leftrightarrow\dfrac{13}{4}:x=\dfrac{5}{2}\cdot\dfrac{5}{4}=\dfrac{25}{8}\)

hay \(x=\dfrac{13}{4}:\dfrac{25}{8}=\dfrac{13}{4}\cdot\dfrac{8}{25}=\dfrac{26}{25}\)

b: \(\Leftrightarrow\dfrac{3}{4}:x=\dfrac{11}{36}-\dfrac{1}{4}=\dfrac{2}{36}=\dfrac{1}{18}\)

=>\(x=\dfrac{3}{4}:\dfrac{1}{18}=\dfrac{54}{4}=\dfrac{27}{2}\)

c: \(\Leftrightarrow\left(-\dfrac{6}{5}+x\right):\left(-3.6\right)=-\dfrac{7}{4}+\dfrac{1}{4}\cdot8=\dfrac{1}{4}\)

=>x-6/5=-9/10

=>x=3/10

29 tháng 12 2021

a: \(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-1\right\}\)

29 tháng 12 2021

ban lam chi tiet hon dc k a?

22 tháng 1 2019

\(\left(-5\right)^2.x=56+22x\)

\(\Leftrightarrow25x=56+22x\)

\(\Leftrightarrow25x-22x=56\)

\(\Leftrightarrow3x=56\)

\(\Rightarrow x=\frac{56}{3}\)