Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
a)
abcabc=abc.1001
Mà 1001 chia hết cho cả 7 ;11và 13
=>abc.1001 chia hết cho 7;11;13
Hay abcabc chia hết cho 7;11;13
Vậy............................
b)
abcdeg=abc.1000+deg (1)
Thay abc=2.deg vào (1) ta có :
deg.2.1000+deg
=deg.2001
Mà 2001 cùng chia hết ch0 23 và 29
=>deg.2001 chia hết cho cả 23 và 29
Hay abcdeg chia hết cho 23 và 29
Vậy ......................................
1) aaaa = a . 1111 = a . 11 . 101
=> aaaa chia hết cho 11 và 101
2 ) abcabc = abc . 1001 = abc .7 . 143 chia hết cho 7
= abc . 1001 = abc .11. 99 chia hết cho 11
= abc . 1001 = abc . 13 . 77 chia hết cho 13
= abc .1001 = abc . 143 . 7 chia hết cho 143
aaaa
= a x 1111
Mà 1111 = 11 x 101
Vậy aaaa chia hết cho 11 và 101
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
abcabc + abcabc
Mk sẽ xét 1 cái nha vì hai số đều giống nhau
\(abcabc\)
\(=abc000+abc\)
\(=abc\cdot1000+abc\cdot1\)
\(=abc\cdot\left(1000+1\right)\)
\(=abc\cdot1001\)
\(1001=7\cdot11\cdot13\)
\(\Rightarrow abc\cdot1001=abc\cdot7\cdot11\cdot13⋮\left(11;13\right)\left(đpcm\right)\)
1/ Từ ab+2cd => abcd = 100ab + cd = 200cd +cd
hay abcd = 201cd mà 201 chia hết cho 67
Vậy abcd chia hết cho 67 (đpcm)
2/
a) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc . 7 . 3 . 11
Vậy abcabc là tích của abc với 7 ;3;11 => abcabc chia hết cho 7, 11 và 13
1) ta co abcabc=abc.1000+abc
= abc.1001 chia hết cho
vi 1001 chia het cho 7;11;13
=> abc.1001 chia het cho 7;11;13
=> abcabc chia het cho 7;11;13
2) trong câu hỏi tương tự nhé
abcabc = abc x 1001 = abc x 7 x 11 x 13
Vậy abcabc cha hết cho ab ; 7;13;11
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
N = abcabc = abc x 1001= abc x[7 x11x 13]
suy ra :abcabc chia het cho 7 , cho11,13
Ta có: \(\overline{abcabc}=\overline{abc000}+\overline{abc}\)
\(=\overline{abc}\times1000+\overline{abc}\)
\(=\overline{abc}\left(1000+1\right)=\overline{abc}.1001\)
\(=\overline{abc}.7.11.13\)
Vậy số \(\overline{abcabc}\) là tích của \(\overline{abc}\) với 7; 11; 13
=> \(\overline{abcabc}\) chia hết cho 7; 11; 13
Ta có : \(\overline{abcabc}\) = \(\overline{abc000}\) + \(\overline{abc}\)
= \(\overline{abc}\) x 1000 + \(\overline{abc}\)
= \(\overline{abc}\) x (1000 + 1)
= \(\overline{abc}\) x 1001
\(\Leftrightarrow\) \(\overline{abc}\) x 7 x 11 x 13
\(\Rightarrow\) \(\overline{abcabc}\) \(⋮\) 7; 11; 13