K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

z C B O A D y S x M N

a. Do ABCD là hình thoi có tâm là O nên từ giả thiết ta có :

\(C=\left(-2;0;0\right)\)

\(D=\left(0;-1;0\right)\)

Từ đó M là trung điểm của SC nên :

\(M\left(-1;0=-\sqrt{2}\right)\)

Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)

         \(\overrightarrow{BM}=\left(-1;-1;\sqrt{2}\right)\)

Gọi \(\alpha\) là góc giữa 2 đường thẳng SA, MB, ta có :

\(\cos\alpha=\frac{\left|\overrightarrow{SA.}\overrightarrow{BM}\right|}{\left|\overrightarrow{SA}\right|.\left|\overrightarrow{MB}\right|}=\frac{\left|-2-4\right|}{\sqrt{4+8}.\sqrt{1+2+1}}=\frac{6}{4\sqrt{3}}=\frac{\sqrt{3}}{2}\)

Vậy \(\alpha=60^0\)

Để tính khoảng cách giữa 2 đường thẳng chéo nhau SA, BM ta sử dụng công thức :

\(d\left(SA;BM\right)=\frac{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}\right|}{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|}\)  (1)

Theo công thức  xác định tọa độ vecto \(\left[\overrightarrow{SA};\overrightarrow{BM}\right]\) ta có :

\(\left[\overrightarrow{SA};\overrightarrow{BM}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}2&0\\-1&-1\end{matrix}\right|\right)\)

                  \(=\left(-2\sqrt{2};1;0\right)\)

\(\Rightarrow\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|=\sqrt{12}\)

\(\overrightarrow{AB}=\left(-2;1;0\right)\)

\(\Rightarrow\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}=4\sqrt{2}\)

Thay vào (1) ta có :

\(d\left(SA;BM\right)=\frac{4\sqrt{2}}{\sqrt{12}}=\frac{2\sqrt{6}}{3}\)

b. Vì AB \\ mặt phẳng (SDC) nên MN \\ DC. Suy ra N là trung điểm của SD

\(\Rightarrow N=\left(0;-\frac{1}{2};\sqrt{2}\right)\)

Dễ thấy :

\(V_{S.ABMN}=V_{S.ABN}+V_{S.BMN}\)

              \(=\frac{1}{6}\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{SN}\right|+\frac{1}{6}\left|\left[\overrightarrow{SB};\overrightarrow{SM}\right].\overrightarrow{SN}\right|\)    (2)

Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)

         \(\overrightarrow{SN}=\left(0;-\frac{1}{2};-\sqrt{2}\right)\)

         \(\overrightarrow{SB}=\left(0;1;-2\sqrt{2}\right)\)

         \(\overrightarrow{SM}=\left(-1;0;-\sqrt{2}\right)\)

Ta lại có :

\(\left[\overrightarrow{SA};\overrightarrow{SB}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&-2\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\-2\sqrt{2}&0\end{matrix}\right|;\left|\begin{matrix}2&0\\0&1\end{matrix}\right|\right)\)

                 \(=\left(2\sqrt{2};4\sqrt{2};2\right)\)

\(\left[\overrightarrow{SB};\overrightarrow{SM}\right]=\left(\left|\begin{matrix}1&-2\sqrt{2}\\0&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&0\\-\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}0&1\\-1&0\end{matrix}\right|\right)\)

                 \(=\left(-\sqrt{2};2\sqrt{2};1\right)\)

Thay vào (2) được :

\(V_{S.ABMN}=\frac{1}{6}\left(\left|-2\sqrt{2}-2\sqrt{2}\right|+\left|-\sqrt{2}-\sqrt{2}\right|\right)=\sqrt{2}\)

3 tháng 12 2018

Đáp án B

14 tháng 8 2016

Khối đa diện

30 tháng 4 2019

9 tháng 3 2019

NV
17 tháng 9 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SMA}\) là góc giữa SM và đáy

\(\Rightarrow\widehat{SMA}=60^0\Rightarrow SA=AM.tan60^0=\sqrt{3a^2+\left(\dfrac{2a}{2}\right)^2}.\sqrt{3}=2a\sqrt{3}\)

Qua B kẻ đường thẳng song song AM cắt AD kéo dài tại E

\(\Rightarrow AM||\left(SBE\right)\Rightarrow d\left(AM;SB\right)=d\left(AM;\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Từ A kẻ \(AH\perp BE\) , từ A kẻ \(AK\perp SH\Rightarrow AK=d\left(A;\left(SBE\right)\right)\)

\(\widehat{DAM}=\widehat{AEB}\) (đồng vị) , mà \(\widehat{BAH}=\widehat{AEB}\) (cùng phụ \(\widehat{ABH}\))

\(\Rightarrow\widehat{DAM}=\widehat{BAH}\)

\(\Rightarrow AH=AB.cos\widehat{BAH}=AB.cos\widehat{DAM}=\dfrac{AB.AD}{AM}=\dfrac{2a.a\sqrt{3}}{2a}=a\sqrt{3}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AH^2}+\dfrac{1}{SA^2}=\dfrac{1}{3a^2}+\dfrac{1}{12a^2}=\dfrac{5}{12a^2}\)

\(\Rightarrow AK=\dfrac{2a\sqrt{15}}{5}\)

NV
17 tháng 9 2021

undefined

29 tháng 5 2016

I K H B A D C

Giả sử : \(\widehat{B}=45^o\) (trường hợp khác \(\widehat{B}=135^o\) )

ta có : \(\begin{cases}IA=IB\\DA=DB\end{cases}\) \(\Rightarrow ID\perp AB\)

\(\overrightarrow{ID}=\left(-2;1\right)\) ptdt ID nhận \(\overrightarrow{n_{ID}}=\left(1;2\right)\) làm VTPT ta có pt: \(x+2y+3=0\)

ptdt AB đi qua K và nhận \(\overrightarrow{ID}\) làm VTPT ta có pt : \(-2x+y+9=0\)

tọa độ trung điểm H của AB là nghiệm của hệ : \(\begin{cases}x+2y=-3\\-2x+y=-9\end{cases}\) \(\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\) vậy \(H\left(3;-3\right)\)

pt đường tròn tâm H bán kính \(HD=\sqrt{4+16}=\sqrt{20}\) là : \(\left(x-3\right)^2+\left(y+3\right)^2=20\)

Tọa độ của A và B là nghiệm của hệ : \(\begin{cases}-2x+y=-9\\\left(x-3\right)^2+\left(y+3\right)^2=20\end{cases}\) giải nghiệm ta được \(\begin{cases}x=5\\y=1\end{cases}\) hoặc \(\begin{cases}x=1\\y=-7\end{cases}\) vì A có tung độ dương nên \(A\left(5;1\right);B\left(1;-7\right)\)

C là giao điểm của dt BD và IC:

ptdt BD nhận \(\overrightarrow{n}=\left(6;2\right)=2\left(3;1\right)\) làm VTPT nên ta có pt : \(3x+y=-4\)

ptdt IC nhận \(\overrightarrow{n}=\left(4;3\right)\) làm VTPT nên ta có pt : \(4x+3y=-2\)

vậy tọa độ C là nghiệm của hệ :\(\begin{cases}3x+y=-4\\4x+3y=-2\end{cases}\) \(\Leftrightarrow\begin{cases}x=-2\\y=2\end{cases}\) vậy \(C\left(-2;2\right)\)

29 tháng 5 2016

Bạn vẽ hình đi! Mình chỉ cho!