Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các tính chất ở cá câu a ,b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".
Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".
Tính chất ở câu d được suy ra từ định lí: Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác cân.
Các tính chất ở các câu (a); (b) được suy ra từ định lí: “Tổng ba góc của một tam giác bằng nhau bằng 1800”.
Tính chất ở câu (c) được suy ra từ định lí: “Trong tam giác cân, hai góc ở đáy bằng nhau”.
Tính chất ở câu (d) được suy ra từ định lí: “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”.
a) Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó
- Được suy ra từ Định lí tổng ba góc của một tam giác
b) trong một tam giác vuông,hai góc nhọn phụ nhau
- Được suy ra từ Định nghĩa tam giác vuông
c) Trong một tam giác đều,các góc bằng nhau
- Được suy ra từ các định lí :
+ Trong một tam giác câu, hai góc ở đáy bằng nhau.
+ Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
d) nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều
- ĐL đảo của ĐL ở câu c
1.Khẳng định nào sau đây không đúng:
A. Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó
B. Trong tam giác cân hai góc ở đáy bằng nhau
C. Tam giác có hai góc bằng nhau là tam giác đều
2.Tam giác nào là tam giác vuông với số đo 3 cạnh như sau:
A. 13m; 14m; 15m B. 11m; 12m; 10m
C. 12m; 9m; 15m D. 8m; 8m; 10m
D. Trong tam giác đều mỗi góc bằng 60 độ
Tham khảo :
* Chứng minh:
a)
Ta có:
Tổng ba góc của tam giác \(ABC\) bằng \(180^o\) nên \(\widehat A + \widehat B = {180^o} - \widehat C\)
Góc \(ACx\) là góc ngoài của tam giác \(ABC\) nên\(\widehat {ACx}= 180^o-\widehat C\)
Do đó: \(\widehat {ACx} = \widehat A + \widehat B\).
b) Tam giác \(ABC\) vuông tại \(A\)
\( \Rightarrow \widehat A = {90^o}\)
Áp dụng định lí tổng các góc của một tam giác vào\(\Delta ABC\) ta có:
\(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A = {180^o} - {90^o} = {90^o}\)
c) Giả sử có tam giác \(ABC\) đều
\( AB = AC =BC \)
\( ΔABC\) cân tại \(A\) và cân tại \( B\).
\( \Rightarrow \widehat A = \widehat B;\,\,\,\,\widehat A = \widehat C\) (tính chất tam giác cân)
\( \Rightarrow \widehat A = \widehat B = \widehat C\)
d) Giả sử\(\Delta ABC\) có\(\widehat A = \widehat B = \widehat C\)
Có\(\widehat A = \widehat B\Rightarrow \)\(\Delta ABC\) cân tại \(C\), do đó \(CA=CB\).
Có\(\widehat B = \widehat C\Rightarrow \) \(\Delta ABC\) cân tại \(A\) do đó \(AC=AB\)
\( AB = AC = BC ΔABC\) là tam giác đều.
Câu 1: C
Câu 2: D